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Abstract

Yes. We state closed-form expressions for steady state gains from trade that apply in a class of
dynamic trade models that includes dynamic versions of the Krugman (1980), Melitz (2003), and
customer capital (e.g., Arkolakis, 2010) models. The gains are a function of the domestic trade
share and the long-run elasticity of trade with respect to iceberg trade costs, similar to Arkolakis,
Costinot, and Rodríguez-Clare (2012). In contrast to static settings, in a dynamic world this long-
run elasticity cannot be estimated in one step by relying on tariff variation as shifters of trade costs.
We show, instead, that this object can be recovered by combining two tariff elasticity estimates:
the long- and the short-run. Thus, the short-run tariff elasticity indirectly enters the formula for
the steady state gains from trade. Our main substantive finding is that the gains from trade are
large. They depend crucially on the short-run tariff elasticity, and can be arbitrarily large even if
the long-run tariff elasticity is high. Accounting for the transition path has a minor impact on the
magnitude of the gains from trade, relative to simply comparing steady states.
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1. Introduction

Dynamic trade models have a tradition going back to at least the 1960s (e.g. Bardhan, 1965, 1966;
Oniki and Uzawa, 1965; Inada, 1968; Stiglitz, 1970). While this line of research has been a continuous
presence in the trade literature, the last decade has seen a veritable explosion of work employing
dynamic quantitative trade models. While modeling and quantification have flourished, there are
few analytical characterizations of the gains from trade in dynamic environments. In particular, we
currently lack compact and intuitive gains from trade formulas in the spirit of Arkolakis, Costinot,
and Rodríguez-Clare (2012, henceforth ACR) for dynamic economies.

This paper makes three contributions. Our theoretical contribution is to state ACR-like closed-
form expressions for the gains from trade (GFT) that apply in dynamic models in steady state. Our
measurement contribution is to show how empirical elasticity estimates at multiple time horizons can
be used to recover the structural parameters required to calculate the GFT in a dynamic setting. The
quantification contribution computes the resulting GFT, highlights the importance of the short-run
trade elasticities, and compares the steady state gains implied by the formula to the gains from trade
that explicitly account for the transition path between the trade regimes.

To illustrate the model features important for the results, we start with a simple dynamic Krugman
(1980) model. There are multiple countries and firms. Firms face downward-sloping demand in
destination markets and are monopolistically competitive. Within a period, they earn positive flow
profits. In order to enter a destination market, a firm has to pay a stochastic sunk cost. A firm enters
a destination market if the net present value of its expected profits from selling there cover the sunk
costs of entry. This feature introduces forward-looking behavior and gradual adjustment to shocks.
Following a trade cost shock, two forces will act on the welfare of the domestic agents: the gain from
imported varieties, captured by the domestic trade share as in ACR; and the loss in domestic varieties.
It turns out that under the inverse Pareto distributional assumption on the sunk costs, the loss of
domestic varieties is a power function of the domestic trade share. Thus, the domestic trade share is a
sufficient statistic for the welfare change, modulo the relevant elasticity. This elasticity is a function of
the Dixit-Stiglitz substitution elasticity between firms, and the curvature of the sunk cost distribution.
Intuitively, this curvature regulates how strongly domestic variety responds to foreign competition.

We then state a general set of conditions under which the closed-form expression for the gains
from trade applies. The first two conditions coincide with ACR: trade is balanced; and the ratio of
aggregate profits to aggregate sales is constant. The third condition puts structure on supply and
demand. Total bilateral exports can without loss of generality be written as a product of sales per unit
mass of firms and the mass of firms. The result requires that (i) demand per unit mass of firms is CES
(closely related to ACR’s third assumption), and (ii) the mass of firms is a power function of sales per
firm normalized by the source country wage. The assumption (ii) is an additional restriction required
in a dynamic environment. While it is sensible that the mass of firms would be an increasing function
of per-firm sales relative to factor cost, the power functional form of this relationship is a non-trivial
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restriction.
Under these conditions, we show that the ratio of steady state real consumption levels under trade

relative to autarky is given by (
𝜆 𝑗 𝑗

) 1
(1+𝜒)𝜀0

𝜅 ,

where 𝜆 𝑗 𝑗 is the share of domestically-produced goods in total spending, 𝜀0
𝜅 is the elasticity of the

CES demand per unit mass to unit costs, and 𝜒 is the exponent governing the relationship between
the mass of firms and per-firm sales. Importantly, (1+ 𝜒)𝜀0

𝜅 is also the long-run elasticity of trade with
respect to the iceberg trade costs.

This formula is essentially ACR. Our theoretical contribution is to derive it in a general dynamic
environment. In the process we show that in a dynamic setting the long-run trade elasticity is
governed by different structural parameters than in static settings. Most importantly, the curvature
of the response of entry to destination-specific sales, 𝜒, does not appear in the ACR formulas. In the
dynamic Krugman model, 𝜀0

𝜅 is simply 1 − 𝜎, where 𝜎 is the Dixit-Stiglitz substitution elasticity. We
next show that the conditions of the proposition are satisfied by two additional important dynamic
models: the customer base model à la Arkolakis (2010) with the cost of acquiring customers taking
a power form; and the Melitz (2003) model with Pareto productivity and inverse Pareto sunk cost
distributions.

Next, we turn to measurement. While the domestic trade shares are fairly straightforward to
obtain, the long-run elasticity of trade with respect to iceberg costs is harder to pin down, because we
do not normally observe iceberg trade costs. Instead, the predominant approach in the literature is to
use tariff variation, as tariffs are often the only ad valorem component of trade costs that is relatively
easily observed.1

The distinction between iceberg trade costs and tariffs is innocuous in static settings, as the
iceberg elasticity can be easily recovered from the tariff elasticity. It is no longer innocuous in
dynamic environments. To make this explicit, we state a generalization of the main proposition to an
environment with both iceberg costs and tariffs. The GFT formula still requires the long-run elasticity
of trade to iceberg costs. However, in a dynamic world the long-run elasticity of trade with respect
to iceberg trade costs cannot be recovered from the long-run elasticity with respect to tariffs alone.
In addition, the formula now features an adjustment for tariff revenue. This type of adjustment was
derived in a static setting by Felbermayr, Jung, and Larch (2015). We show that in a dynamic setting,
computing this adjustment requires not only the long-run trade elasticity, but also knowledge of 𝜀0

𝜅

and 𝜒 individually.
To summarize, implementing the dynamic gains from trade formula faces two hurdles: (i) the

long-run iceberg trade cost elasticity cannot be directly computed from the long-run tariff elasticity,
and tariff elasticities are often the only reliable empirical estimates available; and (ii) implementing

1At least 20 papers have used tariff variation to estimate the trade elasticity in the past 25 years. See Head and Mayer
(2014) and Boehm, Levchenko, and Pandalai-Nayar (2023) for bibliographies.
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the tariff adjustment requires knowing not just the long-run iceberg elasticity, but 𝜀0
𝜅 and 𝜒 separately.

We propose a solution: these two parameters can be inferred from two tariff elasticities at different
time horizons: the short- and the long-run. Intuitively, the short-run tariff elasticity is a function of 𝜀0

𝜅,
while the long-run tariff elasticity is a function of both 𝜀0

𝜅 and 𝜒. Thus, with two empirical estimates
– the short- and the long-run – one can recover both deep parameters.

Finally, with this approach in hand, we turn to quantification. We perform three exercises. First,
we report the dynamic gains from trade for a large set of countries according to our formula and
accounting for tariffs. Our preferred short– and long-run tariff elasticity estimates are taken from
Boehm, Levchenko, and Pandalai-Nayar (2023). The gains from trade are large, with gains of 25-30%
for even the largest countries such as the US and Brazil, and gains of over 100% for several countries.
At the same time, the tariff revenue adjustment plays a small role in all but a handful of economies.
Second, we highlight the role of the short-run trade elasticity by setting the long-run tariff elasticity at
a conventional high value of −5, but varying the short-run elasticity. It turns out that conditional on a
fixed long-run elasticity, the short-run elasticity is decisive for the overall gains from trade. In fact, in
the limit as the short-run elasticity goes to -1, the gains from trade become infinite even with a high
long-run elasticity. Most available estimates of the short-run elasticity are low (Fitzgerald and Haller,
2018; Boehm, Levchenko, and Pandalai-Nayar, 2023; Auer, Burstein, and Lein, 2021), suggesting that
gains from trade are likely quite large, regardless of the long-run elasticity.

Third, we compare the gains implied by the formula with the gains from trade that also account
for the transition path from one trade regime to another. The length of the transition path – and
therefore its quantitative importance for welfare – is disciplined by the amount of time it takes the
trade elasticity to converge to the long-run value. Boehm, Levchenko, and Pandalai-Nayar (2023) find
that the transition takes 7-10 years. While steady state comparisons are unambiguous, the dynamic
path of consumption will differ depending on whether the world is transitioning from autarky to
trade, or from trade to autarky. Thus, we simulate both scenarios.

There are two main findings. First, the disparity between steady state formula-implied gains and
the full welfare change over the transition path is relatively minor. Second, the steady state formula
overstates the dynamic gains of moving from autarky to trade, but understates the gains from staying
open to trade compared to the dynamic path of moving from trade to autarky. The intuition is as
follows. When moving from autarky to trade, we start with the autarky steady state, and transition
to the trade steady state slowly. Over this transition, consumption is lower than eventual steady
state consumption, because agents need to invest in setting up exporting firms, and doing so requires
forgoing consumption over the transition path. As a result, the dynamic gains of going from autarky
to trade are below the steady state comparison. Moving from trade to autarky, countries’ accumulated
exporting capital has become useless, but they need to increase the mass of domestic firms to replace
imports. Thus, when shocked with an unanticipated increase in trade costs, countries also decrease
consumption below the eventual autarky steady state, as they accumulate domestic firms. This
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reduces the value of the consumption path towards autarky – effectively the denominator of the GFT
– relative to steady state, and thus raises the implied GFT.

Literature. While the field of international trade has always been interested in the gains from trade,
the literature on the quantification of GFT was given fresh impetus by the landmark contribution of
Arkolakis, Costinot, and Rodríguez-Clare (2012), who stated closed-form expressions for the GFT in
a wide class of static trade models.2 This led to an active literature exploring various analytical and
quantitative properties of the sufficient statistics formulas, such as sectoral comparative advantage
(Costinot and Rodríguez-Clare, 2014; Levchenko and Zhang, 2014) or trade elasticities (Ossa, 2015;
Imbs and Mejean, 2017). The formulas have also been extended in a variety of directions, such as
variable markups (Arkolakis et al., 2019), non-constant trade elasticities (Melitz and Redding, 2015;
Feenstra, 2018; Adão, Arkolakis, and Ganapati, 2020), gains from multinational production (Ramondo
and Rodríguez-Clare, 2013), non-representative agent settings (Galle, Rodríguez-Clare, and Yi, 2023),
and accounting for tariff revenue (Felbermayr, Jung, and Larch, 2015; Lashkaripour, 2021), to name a
few.

The literature on analytical GFT characterizations in dynamic environments is more limited.
Arkolakis, Eaton, and Kortum (2011) and Chen et al. (2024) develop results for a dynamic version of
the Eaton-Kortum model, and Atkeson and Burstein (2010) and Alessandria, Choi, and Ruhl (2021)
for a dynamic heterogeneous firm model. We provide a more general characterization that applies to
steady state comparisons in a broad class of models. Unlike the Eaton-Kortum setting, our analytical
results cover cases in which there is net firm entry and profits. We also emphasize the importance
of measurement, in particular the information contained in trade elasticities at multiple horizons in
conditioning the steady state gains from trade.

The rest of the paper is organized as follows. Section 2 fully lays out the simplest dynamic model to
illustrate the mechanics behind the result. Section 3 states the general proposition and establishes the
mappings to other dynamic models. Section 4 quantifies the gains from trade. Section 5 concludes.

2. Warmup: Welfare Gains in a Dynamic Krugman Model

This section derives the gains from trade formula in the simplest possible setup: a dynamic version
of the Krugman (1980) model. It serves to introduce the notation maintained throughout the paper,
and to demonstrate what features are essential for the result to go through.

2.1 Model Setup

Consider a dynamic economy with 𝐽 countries indexed by 𝑖 and 𝑗, and discrete time indexed by 𝑡.
Each country is populated by a representative consumer who consumes 𝐶 𝑗𝑡 and inelastically supplies

2Antecedents that stated similar formulas in specific settings include Eaton and Kortum (2002) for the Ricardian model,
Eaton and Kortum (2005) for the Armington model, and Arkolakis et al. (2008) for the Melitz model.
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labor 𝐿 𝑗 .

Households. Consumers in country 𝑗 maximize

max
{𝐶 𝑗𝑡}

∞∑
𝑡=0

𝛽𝑡
𝐶

1−𝛾
𝑗𝑡

1 − 𝛾

subject to the budget constraint

𝑃𝑗𝑡𝐶 𝑗𝑡 +
𝐵 𝑗𝑡

1 + 𝑟𝑛
𝑗𝑡

= 𝑤 𝑗𝑡𝐿 𝑗 +Π𝑗𝑡 + 𝑅
𝑔

𝑗𝑡
+ 𝐵 𝑗𝑡−1 , (2.1)

and a no-Ponzi game condition. Here, 𝑃𝑗𝑡 is the consumption price index in country 𝑗, 𝐵 𝑗𝑡 are
bond holdings, 𝑟𝑛

𝑗𝑡
is the nominal interest rate, 𝑤 𝑗𝑡 the nominal wage, Π𝑗𝑡 aggregate profits, and

𝑅
𝑔

𝑗𝑡
are government tariff revenues rebated to the household. The parameters 𝛽 and 𝛾 denote the

household’s discount factor and the coefficient of relative risk aversion, respectively. We assume that
firms producing in country 𝑗 are exclusively owned by the consumer in 𝑗, and hence the consumer
receives all profits as income.3

Optimal behavior implies that consumption follows the Euler equation(
1 + 𝑟 𝑗𝑡

)
𝛽𝐶

−𝛾
𝑗𝑡+1 = 𝐶

−𝛾
𝑗𝑡

,

where 1 + 𝑟 𝑗𝑡 =
(
1 + 𝑟𝑛

𝑗𝑡

)
𝑃𝑗𝑡

𝑃𝑗𝑡+1
is the real interest rate in country 𝑗.

The consumption bundle 𝐶 𝑗𝑡 is a CES aggregate of quantities 𝑞𝑖 𝑗𝑡 (𝜔) supplied by firms indexed
by 𝜔, from all countries 𝑖 serving market 𝑗:

𝐶 𝑗𝑡 =

(∑
𝑖

∫
Ω𝑖 𝑗𝑡

𝑞𝑖 𝑗𝑡 (𝜔)
𝜎−1
𝜎 𝑑𝜔

) 𝜎
𝜎−1

.

Ω𝑖 𝑗𝑡 denotes the endogenous set of varieties produced in country 𝑖 and available for purchase in
country 𝑗 and 𝜎 > 1 is the demand elasticity. Demand for each variety 𝜔 and the ideal price index
satisfy:

𝑞𝑖 𝑗𝑡 (𝜔) = 𝐶 𝑗𝑡

(
𝑝𝑐
𝑖𝑗𝑡

(𝜔)
𝑃𝑗𝑡

)−𝜎
, (2.2)

𝑃𝑗𝑡 =

(∑
𝑖

∫
Ω𝑖 𝑗𝑡

(
𝑝𝑐𝑖𝑗𝑡 (𝜔)

)1−𝜎
𝑑𝜔

) 1
1−𝜎

,

where 𝑝𝑐
𝑖𝑗𝑡

(𝜔) is the price faced by the consumer in country 𝑗.

3All the results go through if we instead assume that the home consumers receive a constant fraction of aggregate profits.
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Firms. Firms are monopolistically competitive, face the downward-sloping demand curve given by
(2.2), and take the ideal price index as given. The production function is linear in labor. Shipments
from country 𝑖 to 𝑗 are subject to iceberg transport costs 𝜅𝑖 𝑗𝑡 , so that

𝑞𝑖 𝑗𝑡 (𝜔) =
1
𝜅𝑖 𝑗𝑡

𝑙𝑖 𝑗𝑡 (𝜔) ,

where 𝑙𝑖 𝑗𝑡 (𝜔) is the firm’s labor input for producing for market 𝑗. The marginal cost of serving market
𝑗 is therefore 𝜅𝑖 𝑗𝑡𝑤𝑖𝑡 . Profit-maximizing firms charge a constant markup over marginal cost:

𝑝𝑥𝑖𝑗𝑡 (𝜔) =
𝜎

𝜎 − 1𝜅𝑖 𝑗𝑡𝑤𝑖𝑡 ,

where 𝑝𝑥
𝑖𝑗𝑡

(𝜔) is the price received by the exporter. As a result, per-period profits are a constant
fraction of firm revenue:

𝜋𝑖 𝑗𝑡 (𝜔) =
1
𝜎
𝑝𝑥𝑖𝑗𝑡 (𝜔) 𝑞𝑖 𝑗𝑡 (𝜔) =

1
𝜎
𝑥𝑖 𝑗𝑡 (𝜔) . (2.3)

Entry. Every period there is a unit mass of potential firms that can enter market 𝑗 from 𝑖. Entry is
subject to a stochastic sunk cost of 𝜉𝑠

𝑖𝑗𝑡
(𝜔) units of country 𝑖’s labor. A firm 𝜔 from 𝑖 that pays the

sunk costs in period 𝑡 sells to 𝑗 from 𝑡 + 1 until it exits. Exit is random and occurs with probability 𝛿.
The value of exporting is therefore

𝑣𝑖 𝑗𝑡 (𝜔) =
1

1 + 𝑟𝑛
𝑖𝑡

(
𝜋𝑖 𝑗𝑡+1 (𝜔) + (1 − 𝛿) 𝑣𝑖 𝑗𝑡+1 (𝜔)

)
. (2.4)

A potential entrant enters if the value of exporting exceeds the sunk cost of entry. The marginal firm’s
sunk costs �̄�𝑠

𝑖𝑗𝑡
satisfy

𝑣𝑖 𝑗𝑡 (𝜔) = 𝑤𝑖 �̄�
𝑠
𝑖𝑗𝑡 (𝜔) . (2.5)

Denote by 𝑛𝑖 𝑗𝑡 the mass of exporters from 𝑖 to 𝑗. Its law of motion is

𝑛𝑖 𝑗𝑡 = (1 − 𝛿) 𝑛𝑖 𝑗𝑡−1 + 𝐺
(
�̄�𝑠
𝑖𝑗𝑡−1

)
,

where 𝐺 denotes the cumulative distribution function of 𝜉𝑠
𝑖𝑗𝑡

.

Tariffs, Aggregation, and Market Clearing. Let 𝜏𝑖 𝑗𝑡 denote gross ad valorem tariffs.4 Then the prices
paid by the consumers and prices received by the exporters satisfy 𝑝𝑐

𝑖𝑗𝑡
(𝜔) = 𝜏𝑖 𝑗𝑡𝑝𝑥𝑖𝑗𝑡 (𝜔), and the

government collects (𝜏𝑖 𝑗𝑡 − 1)𝑝𝑥
𝑖𝑗𝑡

(𝜔) revenue per unit sold.

4In this notation, a 5% ad valorem tariff implies 𝜏𝑖 𝑗𝑡 = 1.05.
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Total exports from 𝑖 to 𝑗 non-inclusive of tariff payments are:

𝑋𝑖 𝑗𝑡 =

∫
Ω𝑖 𝑗𝑡

𝑥𝑖 𝑗𝑡 (𝜔) 𝑑𝜔 = 𝑛𝑖 𝑗𝑡𝑥𝑖 𝑗𝑡 . (2.6)

The tariff revenue of government 𝑗 is

𝑅
𝑔

𝑗𝑡
=

∑
𝑖

(
𝜏𝑖 𝑗𝑡 − 1

)
𝑋𝑖 𝑗𝑡 .

Profits in country 𝑗 are

Π𝑗𝑡 =

∑
𝑖

∫
Ω𝑗𝑖𝑡

𝜋 𝑗𝑖𝑡 (𝜔) 𝑑𝜔 −
∑
𝑖

∫
Ω𝑒

𝑗𝑖𝑡

𝑤 𝑗𝑡𝜉
𝑠
𝑗𝑖𝑡 (𝜔) 𝑑𝜔. (2.7)

whereΩ𝑒
𝑗𝑖𝑡

=

{
𝜔 ∈ [0, 1] : �̄�𝑠

𝑗𝑖𝑡
≥ 𝜉𝑠

𝑗𝑖𝑡
(𝜔)

}
is the set of entrants. Trade is balanced, so that in all countries

𝑗 and periods 𝑡

𝑤 𝑗𝑡𝐿 𝑗 +Π𝑗𝑡 + 𝑅
𝑔

𝑗𝑡
=

𝑛∑
𝑖=1

𝑋𝑗𝑖𝑡 . (2.8)

Trade balance trivially implies that all bond positions are zero: 𝐵 𝑗𝑡 = 0. We include the bond in the
households’ optimization problem only to pin down the interest rates.

2.2 Steady State Welfare Gains from Trade

In this subsection, we abstract from tariff revenues: 𝜏𝑖 𝑗𝑡 = 1 for all 𝑖 and 𝑗, implying that 𝑅𝑔

𝑗𝑡
= 0. Since

all operating firms in the model have identical quantities and prices, we will drop the firm subscript
𝜔 going forward. The steady state objects are denoted by suppressing the time subscripts. From the
budget constraint (2.1), real consumption is:

𝐶 𝑗 =
𝑤 𝑗𝐿 𝑗 +Π𝑗

𝑃𝑗
. (2.9)

We will denote the gross proportional gains from trade as the ratio of real consumption under the
current trade regime relative to autarky:

𝐺𝐹𝑇 =
𝐶 𝑗

𝐶𝐴𝑈𝑇
𝑗

.

In the tradition following Eaton and Kortum (2002) and Arkolakis, Costinot, and Rodríguez-Clare
(2012), we seek to express (2.9) as a function of the domestic trade share and exogenous parameters.
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We start with the standard step that the domestic trade share is:

𝜆 𝑗 𝑗 ≡
𝑛 𝑗 𝑗𝑥 𝑗 𝑗

𝑌𝑗
=

𝑛 𝑗 𝑗

(
𝜎

𝜎−1𝑤 𝑗

)1−𝜎

𝑃1−𝜎
𝑗

, (2.10)

where 𝑌𝑗 ≡ 𝑃𝑗𝐶 𝑗 is total expenditure. Solving this expression for the price index and combining the
result with equation (2.9) implies that real consumption satisfies:

𝐶 𝑗 ∝
𝑤 𝑗𝐿 𝑗 +Π𝑗

𝑤 𝑗𝜆
− 1

1−𝜎
𝑗 𝑗

𝑛
1

1−𝜎
𝑗 𝑗

. (2.11)

From here, we proceed to show that (i) aggregate profits are a constant fraction of the labor income;
and that (ii) the mass of domestic firms 𝑛 𝑗 𝑗 is a power function of 𝜆 𝑗 𝑗 . To compute profits and the
mass of entrants, we must make a distributional assumption on the sunk costs of entry. We assume
that the sunk costs are drawn from an inverse Pareto distribution:

𝐺 (𝜉𝑠) = (𝑏𝜉𝑠)𝜒 , (2.12)

defined over the domain 0 < 𝜉𝑠 ≤ 1
𝑏 for given parameters 𝜒, 𝑏 > 0. We assume throughout that 𝑏

is sufficiently small to ensure that not all potential entrants find it worthwhile to enter in any given
period (�̄�𝑠

𝑖𝑗𝑡
< 1

𝑏 for all 𝑡). Under this assumption the steady state mass of firms becomes

𝑛 𝑗𝑖 =
1
𝛿

(
𝑏�̄�𝑠

𝑗𝑖

)𝜒
. (2.13)

Since 1 + 𝑟 𝑗 = 1/𝛽 in the steady state, the value of selling to 𝑖 is:

𝑣 𝑗𝑖 =
𝛽

1 − 𝛽 (1 − 𝛿)𝜋 𝑗𝑖 =
𝛽

1 − 𝛽 (1 − 𝛿)
1
𝜎
𝑥 𝑗𝑖 ,

and the threshold sunk cost of entry is:

�̄�𝑠
𝑗𝑖 =

𝛽

1 − 𝛽 (1 − 𝛿)
1
𝜎

𝑥 𝑗𝑖

𝑤 𝑗
. (2.14)

Combining (2.7), (2.8), (2.13), and (2.14) leads to the desired result that total profits are a constant
multiple of labor income:

Π𝑗 =

1
𝜎

(
1 − 𝜒

𝜒+1
𝛽

1−𝛽(1−𝛿)𝛿
)

1 − 1
𝜎

(
1 − 𝜒

𝜒+1
𝛽

1−𝛽(1−𝛿)𝛿
)𝑤 𝑗𝐿 𝑗 . (2.15)

Finally, starting with the expression for steady state 𝑛 𝑗 𝑗 in (2.13), and combining it with (2.14),
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(2.15), and the expression for domestic sales 𝑥 𝑗 𝑗 leads to:

𝑛 𝑗 𝑗 ∝ 𝜆
𝜒

1+𝜒
𝑗 𝑗

. (2.16)

Combining (2.11) with (2.15) and (2.16) yields the result that real consumption is proportional to
the domestic trade share:

𝐶 𝑗 ∝ 𝜆
1

1−𝜎
𝑗 𝑗

𝑛
− 1

1−𝜎
𝑗 𝑗

= 𝜆
1

(1−𝜎)(1+𝜒)
𝑗 𝑗

. (2.17)

Since in autarky 𝜆 𝑗 𝑗 = 1, (2.17) is also the gains from trade.

Note the difference with the ACR formula for the static Krugman model, 𝜆
1

1−𝜎
𝑗 𝑗

, which would obtain
in a setting in which 𝑛 𝑗 𝑗 is either exogenously fixed or constant across equilibria. Compared to the
classic case and holding 𝜎 fixed, the gains from trade are moderated because international trade leads
to the reduction in domestic varieties. The log change in real consumption following a change in the
domestic trade share can be written as:

𝑑 ln𝐶 𝑗 =
1

1 − 𝜎
𝑑 ln𝜆 𝑗 𝑗 −

1
1 − 𝜎

𝑑 ln 𝑛 𝑗 𝑗

𝑑 ln𝜆 𝑗 𝑗
𝑑 ln𝜆 𝑗 𝑗

=
1

1 − 𝜎
𝑑 ln𝜆 𝑗 𝑗︸         ︷︷         ︸

Gain from foreign varieties

− 1
1 − 𝜎

𝜒
1 + 𝜒

𝑑 ln𝜆 𝑗 𝑗︸                    ︷︷                    ︸
Loss of domestic varieties

.

The first term is the usual direct effect of the change in the interior trade share, interpreted as the utility
gains from the availability of foreign goods. It increases with trade openness (recall that an increase
in trade openness is a fall in 𝜆 𝑗 𝑗). The second term is the utility reduction from the loss of domestic
varieties, as an increase in trade openness unambiguously lowers 𝑛 𝑗 𝑗 . It contributes negatively to the
gains from trade. In this case, however, the net gain from openness is positive.

The long-run trade elasticity. An important reason behind the appeal of the ACR result is that the
exponent on the domestic trade share is the inverse of the trade elasticity. We now show that the
dynamic GFT formula shares this feature. Recall that bilateral trade flows are given by (2.6). The
long-run trade elasticity with respect to iceberg trade costs therefore has the following components:

𝜕 ln𝑋𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
=

𝜕 ln 𝑥𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
+

𝜕 ln 𝑛𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗

It is immediate that the 𝜕 ln 𝑥𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
= 1 − 𝜎, as usual. From (2.13) and (2.14), 𝜕 ln 𝑛𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
= 𝜒(1 − 𝜎). Together,

the long-run trade elasticity is
𝜕 ln𝑋𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
= (1 − 𝜎) (1 + 𝜒) ,

and thus the gains from trade formula (2.17) features the inverse of the trade elasticity. Note that
as in ACR and everywhere else in the literature, this is a partial elasticity, that ignores the general-
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equilibrium changes in expenditures, wages, and prices.

3. General Result

We now state the set of conditions under which the dynamic GFT formula applies.

Proposition 3.1. Consider a class of dynamic models that satisfy the following three conditions in their steady
state:

A.1 For all countries 𝑗, trade is balanced (expenditure = revenue):

𝑌𝑗 = 𝑤 𝑗𝐿 𝑗 +Π𝑗 ,

where 𝑌𝑗 = 𝐶 𝑗𝑃𝑗 .

A.2 For all countries 𝑗, profits are a constant share of GDP:

Π𝑗

𝑌𝑗
= 𝑐𝑜𝑛𝑠𝑡

A.3 For all country pairs
(
𝑖 , 𝑗

)
trade flows satisfy

𝑋𝑖 𝑗 = 𝑛𝑖 𝑗𝑥𝑖 𝑗 (3.1)

where

𝑥𝑖 𝑗 ∝ 𝑌𝑗

(
𝜅𝑖 𝑗

𝑤𝑖

𝑃𝑗

)𝜀0
𝜅

(3.2)

𝑛𝑖 𝑗 ∝
(
𝑥𝑖 𝑗

𝑤𝑖

)𝜒
(3.3)

for some constants 𝜀0
𝜅 < 0 and 𝜒 > 0.

Then
𝐶 𝑗 ∝

(
𝜆 𝑗 𝑗

) 1
𝜀0
𝜅 (1+𝜒) (3.4)

where 𝜆 𝑗 𝑗 =
𝑋𝑗 𝑗

𝑌𝑗
, and 𝜀0

𝜅(1 + 𝜒) is the long-run elasticity of trade flows with respect to iceberg trade costs.

Proof. See Appendix A. □

Note that since 𝜆 𝑗 𝑗 = 1 in autarky, (3.4) is also the gross proportional gains from trade in steady
state. Assumptions A.1 and A.2 are identical to R1 and R2 in ACR. Assumption A.3 puts structure
on supply and demand. Condition (3.1) stipulates that total exports from 𝑖 to 𝑗 can be written as
a product of some generic mass 𝑛𝑖 𝑗 and sales per unit mass of sellers 𝑥𝑖 𝑗 . This in and of itself is
without loss of generality, as we can in principle always express total exports as some (average)
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sales per firm/variety/HS code/etc. times the total number/mass of those units. The rest of A.3
puts structure 𝑥𝑖 𝑗 and 𝑛𝑖 𝑗 . Condition (3.2) states that demand per unit mass is CES. It essentially
corresponds to ACR’s R3.

Finally, condition (3.3) is an additional restriction required in a dynamic environment. It puts a
specific structure on how entry occurs. Qualitatively, it is intuitive: entry increases in the ratio of sales
to unit costs. Section 2, in particular equations (2.3) and (2.5), illustrate how this can arise: the value
of exporting scales with per period profits, which are in turn proportional to sales (numerator). Sunk
costs are paid in terms of domestic labor (denominator). However, the proposition requires more
than an increasing relationship: it requires that entry is a power function of this ratio. This places a
restriction on the nature of the entry decision. Section 2 shows that the inverse Pareto distribution of
sunk costs satisfies this restriction.

3.1 Mapping from specific models

Section 2 shows that the dynamic Krugman model satisfies the conditions of Proposition 3.1. In that
model, 𝜀0

𝜅 = 1−𝜎. We now go through two additional commonly used dynamic models: the customer
base model and the Melitz-Pareto model.

Customer base model. In the customer base model (e.g. Arkolakis, 2010; Drozd and Nosal, 2012;
Gourio and Rudanko, 2014; Fitzgerald, Haller, and Yedid-Levi, 2023), firms gradually build up the
mass of customers they serve. Let there be a country 𝑖 representative firm that faces downward-
sloping demand (2.2) per unit mass of customers in country 𝑗. As above, its profits per unit mass
of customers are given by (2.3). Let 𝑛𝑖 𝑗𝑡 be the mass of customers that the firm serves. This mass
depreciates at rate 𝛿 and can be built up by investment 𝑎𝑖 𝑗𝑡 , that acts with a one-period lag. Thus, the
customer mass evolves according to:

𝑛𝑖 𝑗𝑡 = (1 − 𝛿) 𝑛𝑖 𝑗𝑡−1 + 𝑎𝑖 𝑗𝑡−1. (3.5)

Investment has a cost 𝑓 (𝑎𝑖 𝑗𝑡). The firm chooses the path of customer base investment to maximize the
present value of profits:

max
{𝑎𝑖 𝑗𝑡+𝑠}

∞∑
𝑠=0

𝑚𝑛
𝑖𝑡,𝑡+𝑠

[
𝑛𝑖 𝑗𝑡+𝑠𝜋𝑖 𝑗𝑡+𝑠 − 𝑤𝑖𝑡 𝑓

(
𝑎𝑖 𝑗𝑡+𝑠

) ]
(3.6)

subject to (3.5), where 𝑚𝑛
𝑖𝑡,𝑡+𝑠 is the firm’s discount factor. The first-order conditions of this problem

can be manipulated to yield:
𝑤𝑖𝑡 𝑓

′ (𝑎𝑖 𝑗𝑡 ) = 𝑣𝑖 𝑗𝑡 (3.7)

𝑣𝑖 𝑗𝑡 =
1

1 + 𝑟𝑛
𝑖𝑡

(
𝜋𝑖 𝑗𝑡+1 + (1 − 𝛿) 𝑣𝑖 𝑗𝑡+1

)
, (3.8)
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where we assumed that the discount factor of the firm coincides with that of the representative
consumer. Let the cost of accessing customers be given by the following functional form:

𝑓
(
𝑎𝑖 𝑗𝑡

)
=

𝜒

(1 + 𝜒) 𝜁
(
𝑎𝑖 𝑗𝑡

) 1
𝜒+1

. (3.9)

Then, in steady state:

𝑛𝑖 𝑗 =
1
𝛿
𝑎𝑖 𝑗 =

(
𝜁
𝑣𝑖 𝑗

𝑤𝑖

)𝜒
. (3.10)

In turn, combining (2.3) and (3.8) yields the proportionality of 𝑣𝑖 𝑗 to 𝑥𝑖 𝑗 , verifying assumption A.3 in
Proposition 3.1.

To see that Assumption A.2 is satisfied, note that aggregate profits can be written as:

Π𝑖 =

∑
𝑗

(
1
𝜎
𝑛𝑖 𝑗𝑥𝑖 𝑗 − 𝑤𝑖

𝜒

(1 + 𝜒) 𝜁
(
𝑎𝑖 𝑗

) 1
𝜒+1

)
. (3.11)

Since 𝑎𝑖 𝑗 is proportional to 𝑛𝑖 𝑗 , and 𝑎
1
𝜒

𝑖 𝑗
is proportional to 𝑥𝑖 𝑗/𝑤𝑖 (see 3.10 for both),

(
𝑎𝑖 𝑗𝑡

) 1
𝜒+1 is

proportional to 𝑛𝑖 𝑗𝑥𝑖 𝑗 , and 𝑤𝑖 cancels out in the consumer base cost term.
The deeper microfoundation, and thus the interpretation of some equilibrium quantities (e.g., 𝑛𝑖 𝑗)

or parameters (e.g. 𝜒) are different from the Krugman model. However, this model is isomorphic to
dynamic Krugman in its predictions for aggregate trade flows, and the functional forms of the trade
elasticities.

Melitz-Pareto. The dynamic Melitz (2003) model differs from the Krugman model in Section 2 in
two ways. First, firms are heterogeneous in productivity, denoted 𝜑(𝜔). Continuing to assume
constant Dixit-Stiglitz markups, the firm 𝜔’s price becomes:

𝑝𝑥𝑖𝑗𝑡 (𝜔) =
𝜎

𝜎 − 1
𝜅𝑖 𝑗𝑡𝑤𝑖𝑡

𝜑(𝜔) . (3.12)

We assume that 𝜑(𝜔) is distributed Pareto:

𝐹
(
𝜑
)
= 1 −

(
𝜑𝐿

𝜑

)𝜃
. (3.13)

Second, the firm in 𝑖 needs to pay a per-period fixed cost 𝜉 denominated in units of 𝑖’s labor in order
to serve market 𝑗.

As in Section 2, each firm must pay a stochastic sunk cost 𝜉𝑠
𝑖𝑗𝑡

(𝜔) to enter market 𝑗, drawn from
an inverse Pareto distribution (2.12). Paying this sunk cost also reveals to the firm its productivity for
serving market 𝑗. Thus, the entry decision is made based on expected profits. Further, due to the
per-period fixed cost not all firms that pay a sunk cost will end up exporting. The marginal firm earns
variable profits that just cover the per-period fixed costs: 1

𝜎 𝑥𝑖 𝑗𝑡 (𝜔) = 𝑤𝑖𝑡𝜉. Combining (2.2) and (3.12)
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(and noting that without tariffs 𝑝𝑥
𝑖𝑗𝑡

(𝜔) = 𝑝𝑐
𝑖𝑗𝑡

(𝜔)) leads to the productivity cutoff for selling from 𝑖 to
𝑗:

𝜑𝑚
𝑖𝑗𝑡 =

𝜎
𝜎 − 1𝜅𝑖 𝑗𝑡𝑤𝑖𝑡

(
𝜎𝑤𝑖𝑡𝜉

𝐶 𝑗𝑡

(
𝑃𝑗𝑡

)𝜎 ) 1
𝜎−1

. (3.14)

Total sales from 𝑖 to 𝑗 are:

𝑋𝑖 𝑗𝑡 =

∫
𝑥𝑖 𝑗𝑡 (𝜔) 𝑑𝜔

= 𝑛𝑖 𝑗𝑡

∫ ∞

𝜑𝑚
𝑖𝑗𝑡

𝑥𝑖 𝑗𝑡
(
𝜑
)
𝑑𝐹

(
𝜑
)

= 𝑛𝑖 𝑗𝑡 𝐶 𝑗𝑡

(
𝑃𝑗𝑡

)𝜎 ©«
(

𝜃𝜑𝜃
𝐿

𝜃 − (𝜎 − 1)

) 1
1−𝜎

𝜎
𝜎 − 1

𝜅𝑖 𝑗𝑡𝑤𝑖𝑡(
𝜑𝑚
𝑖𝑗𝑡

) 𝜎−1−𝜃
𝜎−1

ª®®®¬
1−𝜎

︸                                                            ︷︷                                                            ︸
𝑥𝑖 𝑗𝑡

, (3.15)

where the last line comes from applying the Pareto distribution. Relative to the Krugman model,
there is the extra complication that the average sales per firm are affected by entry/exit of the marginal
firms – movements in 𝜑𝑚

𝑖𝑗𝑡
. Combining (3.14) and (3.15) leads to the following expression for 𝜑𝑚

𝑖𝑗𝑡
:

𝜑𝑚
𝑖𝑗𝑡 =

(
𝜃𝜑𝜃

𝐿
𝜉𝜎

𝜃 − (𝜎 − 1)
𝑤𝑖𝑡

𝑥𝑖 𝑗𝑡

) 1
𝜃

. (3.16)

In turn, combining (3.15) and (3.16) produces the following expression for 𝑥𝑖 𝑗𝑡 :

𝑥𝑖 𝑗𝑡 ∝
(
𝑌𝑗𝑡

𝑤𝑖𝑡

) 𝜃−(𝜎−1)
𝜎−1

𝑌𝑗𝑡

(
𝜅𝑖 𝑗𝑡𝑤𝑖𝑡

𝑃𝑗𝑡

)−𝜃
. (3.17)

If A.2 holds, then the ratio 𝑌𝑖𝑡/𝑤𝑖𝑡 is constant and this expression for representative sales conforms to
A.3 in Proposition 3.1. We will show below that A.2 holds.

In steady state, at the time sunk costs are paid, the expected profits are:

𝐸
[
𝜋𝑖 𝑗 (𝜔)

]
=

1
𝜎
𝑥𝑖 𝑗

(
�̃�
)
− 𝑤𝑖𝜉

(
𝜑𝐿

𝜑𝑚
𝑖𝑗

)𝜃
. (3.18)

Combining with (3.16) leads to the familiar result that expected profits are a constant fraction of
expected sales: 𝐸

[
𝜋𝑖 𝑗 (𝜔)

]
= 𝜎−1

𝜃
𝑥𝑖 𝑗
𝜎 . Since (2.13) and (2.14) hold unchanged in the Melitz model (with

the qualification that here, 𝑥𝑖 𝑗 is expected, rather than representative firm, sales), they lead to (3.3),
and Assumption A.3 is satisfied.
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To see that A.2 is satisfied, note that the steady state profits to country 𝑖 firms from selling to 𝑗 are:

Π𝑖 𝑗 =
𝜎 − 1
𝜃

1
𝜎
𝑛𝑖 𝑗𝑥𝑖 𝑗 − 𝑤𝑖

∫ 𝜉𝑠 𝑖𝑗

0
𝜉𝑠 𝑔 (𝜉𝑠) 𝑑𝜉𝑠 (3.19)

=
𝜎 − 1
𝜃

1
𝜎
𝑛𝑖 𝑗𝑥𝑖 𝑗 −

𝜒
𝜒 + 1𝛽

𝜎 − 1
𝜃𝜎

𝑥𝑖 𝑗𝑛𝑖 𝑗 (3.20)

=

(
1 − 𝛽

𝜒
𝜒 + 1

)
𝜎 − 1
𝜃𝜎

𝑋𝑖 𝑗 , (3.21)

where the second line uses the distributional assumption on the sunk costs 𝜉𝑠 . Summing across
destinations and imposing trade balance delivers Assumption A.2.

We obtain the familiar result that the elasticity of 𝑥𝑖 𝑗 with respect to trade costs 𝜀0
𝜅 is no longer a

function of the elasticity of substitution, but of the dispersion parameter in the Pareto productivity
distribution. Relative to the Krugman model, following a change in trade costs, average sales per unit
mass 𝑥𝑖 𝑗𝑡 will change both because of the intensive margin (all firms’ sales change) and the extensive
margin (marginal firms entering/exiting). As in Arkolakis et al. (2008) and ACR, when it comes to
𝑥𝑖 𝑗 , those two margins’ net effect is captured by −𝜃.

Differently from those static models, and along the lines of the Krugman model in Section 2, the
gains from trade are conditioned not just by 𝜃, but also by the curvature of the sunk costs 𝜒, due to
the adjustment of the mass of firms 𝑛 𝑗 𝑗 . Thus, the Melitz extension retains the intuitions laid out in
Section 2.

3.2 Generalization to Tariffs

Often, trade elasticities are estimated using variation in tariffs. To build up towards measurement
and quantification, we state a generalization of Proposition 3.1 to a case with tariffs.

Proposition 3.2. Consider a class of dynamic models that satisfy the following three conditions in their steady
state:

A.1’ For all countries 𝑗, trade is balanced (expenditure = revenue):

𝑌𝑗 = 𝑤 𝑗𝐿 𝑗 +Π𝑗 + 𝑅
𝑔

𝑗
,

where 𝑌𝑗 = 𝐶 𝑗𝑃𝑗 and 𝑅
𝑔

𝑗
=

∑
𝑖

(
𝜏𝑖 𝑗 − 1

)
𝑋𝑖 𝑗 .

A.2’ For all countries 𝑗, profits are a constant share of labor income:

Π𝑗

𝑤 𝑗𝐿 𝑗
= 𝑐𝑜𝑛𝑠𝑡
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A.3’ For all country pairs
(
𝑖 , 𝑗

)
trade flows satisfy

𝑋𝑖 𝑗 = 𝑛𝑖 𝑗𝑥𝑖 𝑗

where

𝑥𝑖 𝑗 ∝
1
𝜏𝑖 𝑗

𝑌𝑗

(
𝜏𝑖 𝑗𝜅𝑖 𝑗

𝑤𝑖

𝑃𝑗

)𝜀0
𝜅

(3.22)

𝑛𝑖 𝑗 ∝
(
𝑥𝑖 𝑗

𝑤𝑖

)𝜒
(3.23)

for some constants 𝜀0
𝜅 < 0 and 𝜒 > 0.

Then

𝐶 𝑗 ∝ 𝜆
1

𝜀0
𝜅 (1+𝜒)
𝑗 𝑗

(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

)−(
1− 𝜒

1+𝜒
1
𝜀0
𝜅

)
, (3.24)

and 𝜀0
𝜅(1 + 𝜒) is the long-run elasticity of trade flows with respect to iceberg trade costs.

Proof. See Appendix A. □

Note that since 𝜆 𝑗 𝑗 = 1 and 𝑅
𝑔

𝑗
= 0 in autarky, (3.24) is also the gross proportional gains from

trade in steady state. Because tariffs generate revenue, (3.24) differs from (3.4) by the multiplicative
factor that is a function of one minus the tariff revenue share in final expenditure. This multiplicative
factor is greater than 1 as long as tariff revenue is positive. Thus, it amplifies the gains from trade
relative to the no-tariff formula, conditional on the same 𝜆 𝑗 𝑗 . In static models, this tariff adjustment to
the ACR formula was to our knowledge first stated by Felbermayr, Jung, and Larch (2015). We show
that it operates in a similar way in a dynamic setting. As in Felbermayr, Jung, and Larch (2015), the
exponent on the tariff adjustment term cannot be recovered from the long-run trade elasticity alone.
We show below how to recover this exponent from estimates of short- and long-run trade elasticities.

The data requirements for computing (3.24) are low. In addition to the domestic trade share, all
it additionally requires is the total tariff revenue as share of GDP. This information is often available
from statistical authorities. For the quantification below, we will require bilateral ad valorem tariff
rates. Thus, it will be convenient to state the following alternative functional form for this adjustment
factor:

1 −
𝑅

𝑔

𝑗

𝑌𝑗
=

∑
𝑖

1
𝜏𝑖 𝑗

𝜆𝑖 𝑗 ,

where 𝜆𝑖 𝑗 ≡
𝜏𝑖 𝑗𝑋𝑖 𝑗

𝑌𝑗
is the tariff-inclusive expenditure shares on goods from 𝑖.

We note that the Melitz-Pareto model with tariffs is not covered by Proposition 3.2, because tariffs
also affect the extensive margin conditional on drawing the sunk cost, in a way that is not captured by
(3.22). Proposition A.1 in Appendix A is an extension of Proposition 3.2 that also covers the Melitz-
Pareto model with tariffs. The extended proposition is identical to Proposition 3.2 except for a strictly
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more general functional form for average sales 𝑥𝑖 𝑗 . This generalization only affects the exponent on

the tariff adjustment term
(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

)
, and leaves the component of the GFT related to 𝜆 𝑗 𝑗 unaffected.

As we show in the quantification below, the tariff adjustment term is not quantitatively important. In
addition, the non-linearity introduced by the extensive margin in the Melitz-Pareto model vanishes as
the firm size distribution approaches a power law with exponent close to −1, the empirically relevant
case (Axtell, 2001; Di Giovanni, Levchenko, and Rancière, 2011; Di Giovanni and Levchenko, 2013).
Appendix A contains the detailed discussion.

4. Measurement and Quantification

This section takes the dynamic trade formulas to the data. We make four main points. The first is that
in a dynamic world the long-run trade elasticity with respect to iceberg costs required by the formula
cannot be recovered from a single empirical estimate of the elasticity of trade with respect to tariffs.
Second, we compute the gains from trade under our preferred estimates of the trade elasticities, taken
from Boehm, Levchenko, and Pandalai-Nayar (2023). This exercise shows that the gains from trade
are large, and that the quantitative impact of the tariff adjustment to the GFT formula in (3.24) is
generally minor. Third, we highlight the point that in the dynamic world, the long-run tariff elasticity
is not sufficient for computing the gains from trade, and that GFT can vary widely even conditional
on the same long-run tariff elasticity. Along the way, we also compare the dynamic gains from trade
to those obtained from the static ACR models. Finally, the fourth part of the section compares the
GFT implied by the formula to those computed numerically taking into account the transition path.

4.1 Data

The quantification relies on several sources of data. First, computing the gains from trade using (3.4)
requires the domestic absorption share𝜆 𝑗 𝑗 . Typically, domestic absorption is measured from standard
datasets such as the OECD Inter-Country Input Output tables (ICIO). The ICIO contains information
on all bilateral sectoral expenditures, covering manufacturing and services, and intermediate and
final goods. Importantly, it also contains information on expenditure on domestic sectors. However,
the ICIO does not contain information on bilateral tariff revenues, so aggregate expenditure and
expenditure shares constructed from this source are not tariff-inclusive.

Computing the gains from trade when ad valorem tariffs are non-zero (3.24) requires the total tariff
revenue as a share of total (tariff-inclusive) spending. Aggregate tariff revenues are available from
the World Bank. However, the full quantitative implementation of the dynamic model additionally
requires all tariff-inclusive bilateral expenditure shares 𝜆𝑖 𝑗 . Therefore, aggregate tariff revenues are
not sufficient for our purposes.

To construct bilateral tariff revenue, we obtain tariff data from the TRAINS dataset. This database
reports the applied tariff by country pair at the Harmonized System (HS) 6-digit level. We link these

16



data to trade flows at the HS-6 level from the BACI version of UN-COMTRADE. To compute tariff
revenue, we multiply the bilateral, product-level applied tariffs obtained from TRAINS with bilateral
trade flows from BACI:

𝑅
𝑔

𝑖𝑗
=

∑
𝑝

𝑋BACI
𝑖 𝑗𝑝

(
𝜏TRAINS
𝑖 𝑗𝑝 − 1

)
,

where 𝑅
𝑔

𝑖𝑗
is bilateral tariff revenue from goods trade and 𝑝 is an HS-6 product. BACI does not contain

information on services trade flows. We assume that services trade flows are subject to no tariff, so
the aggregate bilateral tariff rate imposed by 𝑗 on 𝑖 consistent with goods tariff revenues 𝑅𝑔

𝑖𝑗
is:

𝜏𝑖 𝑗 − 1 =
𝑅

𝑔

𝑖𝑗

𝑋ICIO
𝑖 𝑗

,

where 𝑋𝑖 𝑗 is total expenditure of 𝑗 on goods and services from 𝑖. We can then calculate all tariff-
adjusted trade shares 𝜆𝑖 𝑗 :

𝜆𝑖 𝑗 =
𝜏𝑖 𝑗𝑋ICIO

𝑖 𝑗∑
𝑘 𝜏𝑘 𝑗𝑋

ICIO
𝑘 𝑗

.

Our baseline sample includes 67 countries and a rest-of-the-world in 2006.5 We validate our tariff
revenue measures by comparing 𝑅

𝑔

𝑗
=

∑
𝑖 𝑅

𝑔

𝑖𝑗
with national tariff revenue obtained from the World

Bank. As the World Bank tariff revenue data are provided in local currency, we convert them to US
dollars using an annual exchange rate obtained from the same source. Appendix Figure A1 illustrates
that our baseline tariff revenue measures are very similar to those obtained from the World Bank.

The implementation of the full dynamic path in the quantitative model in Section 4.4 additionally
requires data on real GDP, which we obtain from the Penn World Tables.

4.2 Measurement: Trade Elasticities

As in ACR, the gains from trade in this class of dynamic models is a function of the domestic absorption
share and exogenous parameters. Propositions 3.1-3.2 state that the domestic share is exponentiated
with the inverse of the long-run iceberg trade elasticity. In dynamic models, this long-run trade
elasticity is a function of different structural parameters than the “trade elasticity” in static models.
We now show that this has important implications for how this long-run elasticity can be recovered
from the data.

The exponent in the gains from trade formula is the inverse of the long-run elasticity of trade with
respect to iceberg trade costs 𝜅𝑖 𝑗 :

𝜀𝜅 ≡
𝑑 ln𝑋𝑖 𝑗

𝑑 ln𝜅𝑖 𝑗
=

𝑑 ln 𝑛𝑖 𝑗

𝑑 ln𝜅𝑖 𝑗
+

𝑑 ln 𝑥𝑖 𝑗

𝑑 ln𝜅𝑖 𝑗
= 𝜀0

𝜅(1 + 𝜒). (4.1)

5Three percent of the observations show positive bilateral goods trade flows in the ICIO but have no tariffs declared in
TRAINS. In these cases, we assume there is 0 tariff revenue associated with these pairs.
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Though a few papers have used shipping cost data to compute the trade elasticity (e.g. Hummels,
2001; Adão, Costinot, and Donaldson, 2017), the large majority of existing trade elasticity estimates
use tariffs. However, the trade elasticity with respect to tariffs differs from that with respect to iceberg
costs. The tariff elasticity is:

𝜀𝜏 ≡
𝑑 ln𝑋𝑖 𝑗

𝑑 ln 𝜏𝑖 𝑗
=

𝑑 ln 𝑛𝑖 𝑗

𝑑 ln 𝜏𝑖 𝑗
+

𝑑 ln 𝑥𝑖 𝑗

𝑑 ln 𝜏𝑖 𝑗
= (𝜀0

𝜅 − 1) (1 + 𝜒) , (4.2)

The two elasticities differ because iceberg costs are reflected in the border price, whereas tariffs are
not. Most (though not all) of the literature that estimates trade elasticities in the context of static
models recognizes this distinction. In static models, this distinction is fairly innocuous: to account
for it, one could either add 1 to the tariff elasticity to recover the iceberg cost elasticity, or use trade
flows inclusive of tariff payments in estimation. In a dynamic setting, however, neither of these simple
adjustments work, requiring another strategy to recover the iceberg elasticity.6

Fortunately, it is possible to use tariff elasticity estimates at different horizons to reconstruct the
long-run elasticity that enters the gains from trade formula. The key is to use estimates of both short-
and long-run tariff elasticities to separately pin down 𝜀0

𝜅 and 1 + 𝜒. Knowledge of 𝜀0
𝜅 and 1 + 𝜒

separately is also required to compute the tariff revenue adjustment to the GFT formula as in (3.24).
We will call the “short run” a time period over which 𝑥𝑖 𝑗 can adjust but 𝑛𝑖 𝑗 cannot. This is consistent

with the model laid out in Section 2, in which 𝑛𝑖 𝑗 only starts adjusting with a one-period lag. The
short-run tariff elasticity is then:

𝜀0
𝜏 ≡

𝑑 ln𝑋𝑖 𝑗𝑡

𝑑 ln 𝜏𝑖 𝑗𝑡
=

𝑑 ln 𝑥𝑖 𝑗𝑡

𝑑 ln 𝜏𝑖 𝑗𝑡
= 𝜀0

𝜅 − 1. (4.3)

It is immediate that with both the short- and long-run tariff elasticities (4.2)-(4.3) in hand, one can
recover both 𝜀0

𝜅 and 1+ 𝜒, and reconstruct the object needed for the welfare gains formula, (4.1). This
is the strategy we pursue in the quantification that follows.

4.3 Steady State Gains from Trade

Figure 1 plots the gains from trade for a sample of countries based on (3.24). It uses the long-run tariff
elasticity estimate 𝜀𝜏 = −2, and a short-run tariff elasticity estimate 𝜀0

𝜏 = −1.25 (Boehm, Levchenko,
and Pandalai-Nayar, 2023). The blue line is simply the formula (3.4) that ignores tariffs and only
uses information on the domestic trade share. The red dots are (3.24), and thus make the tariff
adjustment using country-specific tariff revenue data. Conditional on a fixed 𝜆 𝑗 𝑗 , the tariff adjustment
unambiguously increases the gains from trade. However, the tariff adjustment is small quantitatively

6For example, in a static Armington or Krugman model the tariff elasticity is −𝜎, while the iceberg cost elasticity is
1− 𝜎. So simply adding 1 to the tariff elasticity would recover the iceberg elasticity. It is immediate from (4.1)-(4.2) that this
won’t work in the dynamic setting. It is also easy to verify that the long-run tariff elasticity of tariff-inclusive trade flows
𝑑 ln

(
𝜏𝑖 𝑗𝑛𝑖 𝑗𝑥𝑖 𝑗

)
/𝑑 ln 𝜏𝑖 𝑗 also does not recover the needed iceberg elasticity (4.1).
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Figure 1: Steady State Gains from Trade
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Notes: This figure depicts the welfare gains from trade as a function of the domestic absorption share 𝜆𝑗 𝑗 . The blue line
implements the formula (3.4). The red dots implement the formula that adjusts for tariff revenue, (3.24).

for all but a few countries.
The gains from trade are large. Even the most closed countries – the US, Brazil, China – gain on

the order of 25-30% from trade. Jordan’s welfare triples, and Malta’s quadruples, when it goes from
autarky to trade.

To highlight the role of dynamics and the short-run elasticity in conditioning the gains from trade,
we now perform the following thought experiment. Suppose the value of the long-run tariff elasticity
𝜀𝜏 is known. This is the object most commonly estimated (or, at least, intended to be estimated) in
the literature. To make the results stark, suppose that the value of this long-run elasticity is high, for
example −5 (Costinot and Rodríguez-Clare, 2014).

A researcher working on static models covered by ACR would simply add 1 to yield a long-run
elasticity with respect to iceberg costs of −4, and compute the gains from trade based on this. As
ACR and Costinot and Rodríguez-Clare (2014) highlight, the basic single-sector ACR formula under
this level of trade elasticity yields fairly small gains from trade. These are depicted by the red line in
Figure 2.

However, even holding 𝜀𝜏 fixed at −5, in a dynamic world an additional piece of information is
required, that can be supplied by the short-run tariff elasticity. The elasticity required in Propositions
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Figure 2: Steady State Gains from Trade: the Role of the Short-Run Elasticity
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Notes: This figure depicts the welfare gains from trade as a function of the domestic absorption share 𝜆𝑗 𝑗 . The red line
depicts the ACR formula with elasticity −4, 𝜆−1/4

𝑗 𝑗
. The other lines implement the formula (3.4) for different values of 𝜀𝜏

and 𝜀0
𝜏.

3.1-3.2 can be rewritten in terms of the (potentially) estimable tariff elasticities as:

𝜀0
𝜅(1 + 𝜒) = 𝜀0

𝜅(1 + 𝜒)𝜀
0
𝜅 − 1
𝜀0
𝜅 − 1

= (𝜀0
𝜅 − 1)(1 + 𝜒)︸            ︷︷            ︸

𝜀𝜏

𝜀0
𝜅

𝜀0
𝜅 − 1

= 𝜀𝜏
𝜀0
𝜏 + 1
𝜀0
𝜏

.

This expression makes it clear that a high long-run tariff elasticity 𝜀𝜏 is consistent with very high gains
from trade if the short-run tariff elasticity is low enough. Indeed, as 𝜀0

𝜏 ↑ −1, the gains from trade
become infinite. The green and black lines in Figure 2 plot the gains from trade according to (3.4)
under an identical long-run 𝜀𝜏 = −5, but for two values of 𝜀0

𝜏, −1.1 and −2. The difference in the gains
from trade is drastic. Indeed, the black line is not too far from our baseline gains from trade plotted
under the long-run elasticity of 2, despite a much higher long-run elasticity that it uses. However,
even with an unreasonably high short-run elasticity of 2, the dynamic gains from trade are higher
than in the static ACR implementation.
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Table 1: Baseline Calibration

Parameters Value / Target / Source Notes

𝜎 1.25 Short-run tariff elasticity
𝜒 0.6 Inverse Pareto shape parameter
𝛽 0.97 Discount factor
𝛾 2 Relative risk aversion
𝛿 0.25 Exit rate
𝑏 1 Inverse Pareto scale parameter
𝜏𝑖 𝑗 BACI, TRAINS Average bilateral tariff
𝜅𝑖 𝑗 𝜆𝑖 𝑗 from BACI, ICIO, TRAINS Non-tariff trade costs
𝐿𝑖 Relative real GDP from PWT Labor endowment

Notes: The table presents the baseline calibration.

4.4 The Transition Path and Welfare Gains

In the final exercise, we answer the question of how costly it is that the formula compares steady
states, and thus ignores the transition path. To do this, we compute welfare taking into account the
transition between trade regimes. This requires calibrating the full model, and thus taking a stand on
all the parameters.

We employ the Krugman model from Section 2. In addition to 𝜎 and 𝜒, calibrated as above using
short- and long-run tariff elasticity estimates, we require the depreciation rate 𝛿, risk aversion 𝛾,
the discount factor 𝛽, and the Inverse Pareto scale parameter 𝑏. Of these, the most important one
is 𝛿, as it controls the speed of transition. The lower is 𝛿, the slower the transition, and the greater
the discrepancy between steady state and fully dynamic gains. When depreciation is full (𝛿 = 1),
transition occurs in 1 period. This parameter is disciplined by the speed of convergence of the trade
elasticity to the long-run, as in Boehm, Levchenko, and Pandalai-Nayar (2023). That paper reports
that convergence occurs between 7 and 10 years. We use this as a target; it implies 𝛿 = 0.25. The
remaining parameter choices are standard. Table 1 summarizes the baseline calibration. Appendix
B.1 details the procedure. We solve the model for the largest 29 countries in the world by total GDP
and a rest-of-the-world aggregate.

While steady state comparisons are unambiguous, in a dynamic setting we have to specify whether
the world is transitioning from autarky to trade, or from trade to autarky, and the welfare comparison
between trade and autarky will differ in those two scenarios. Figure 3 reports three sets of gains
from trade: (i) comparing autarky and trade steady states according to the formula (3.24) (blue); (ii)
transitioning from autarky to the current levels of trade openness (red); and (iii) transitioning from
the current levels openness to autarky (black). For scenarios (ii) and (iii) we begin in the initial steady
state and then unexpectedly and permanently change trade costs 𝜅𝑖 𝑗 at time 1 to the value in the
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Figure 3: Steady State Gains vs. Gains over the Transition Path
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Notes: The blue dots depict the GFT formula for steady state comparisons (3.24). The red dots depict the difference in
real consumption from starting in autarky and moving to the observed levels of trade,relative to remaining in autarky
forever. The black dots depict the difference in real consumption between staying at the observed levels of trade forever
and transitioning to autarky. Dashed lines represent an exponential fit between the gains from trade and the domestic
absorption shares.

terminal steady state. When computing the welfare gains for country 𝑖, we make this adjustment to
trade costs for all 𝑗 ≠ 𝑖. The GFT numbers for each country and each scenario are listed in Appendix
Table A1.

Two conclusions stand out from the figure. First, the disparity between steady state gains and the
full dynamic gains is relatively minor. On average in this sample, the autarky-to-trade gains are 13.1
percent smaller, and trade-to-autarky gains are 8.5 percent larger. Second, the steady state gains are
always in between those two.

To illustrate the intuition for this ranking of gains, Appendix Figure A2 plots the dynamic paths
of consumption, and Figure 4 plots the evolution of the masses of firms for one country, Malaysia.
When moving from autarky to trade, we start with the autarky steady state, and transition to the trade
steady state slowly. Over this transition, consumption is lower than in the terminal steady state. This
is because agents need to invest in “exporting capital” 𝑛 𝑗𝑖𝑡 , 𝑖 ≠ 𝑗 starting from a level of 0, as illustrated
in the left panel of Figure 4, and doing so requires forgoing consumption over the transition path. As
a result, the dynamic gains of going from autarky to trade are below the steady state comparison.

Moving from trade to autarky, countries’ accumulated exporting capital 𝑛 𝑗𝑖𝑡 has become useless,
because flow exports along the intensive margin 𝑥 𝑗𝑖𝑡 is zero under infinite trade costs. At the same
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Figure 4: Mass of Firms in the Transition Path, Malaysia
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Notes: This figure shows the transition paths of the masses of Malaysian firms after a sudden change in the trade
regime. The dark line denotes the mass of Malaysian firms serving the domestic market 𝑛 𝑗 𝑗𝑡 and the light lines denote
the masses of Malaysian firms serving the other countries 𝑛 𝑗𝑖𝑡 , 𝑗 ≠ 𝑖. The left panel plots the paths following a sudden
decrease in iceberg transport costs 𝜅𝑖 𝑗𝑡 that takes the model from autarky to trade. The right panel plots the paths
following a one-time increase in iceberg transport costs 𝜅𝑖 𝑗𝑡 that takes the model from trade to autarky.

time, firms invest in their domestic operations, increasing the mass of domestic firms 𝑛 𝑗 𝑗𝑡 as shown
in the right panel of Figure 4. The result is an immediate drop in consumption below the level of the
autarky steady state, and a gradual convergence of consumption to the autarky steady state level from
below (Appendix Figure A2). This reduces the present value of consumption relative to the steady
state – effectively the denominator of the GFT formula – and thus raises the implied GFT relative to
the steady state comparison.

5. Conclusion

Research employing dynamic trade and spatial models has exploded in recent years. We provide
closed-form gains from trade formulas that apply in a wide class of dynamic trade models. After
stating the theoretical result, we emphasize measurement. We show that the short-run tariff elasticity
is a crucial object even in evaluating the long-run steady state gains. In our quantification, the gains
from trade are large, because the short-run elasticity is typically found to be small. Finally, we show
that accounting for the transition path has a modest effect on the magnitude of the gains. Whether the
steady-state formula over- or under-states the transition path gains depends on whether the transition
is from autarky to trade or in the opposite direction.
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A. Theory Appendix

Proof of Proposition 3.1. From A.1 and A.2, real consumption is proportional to the real wage:

𝐶 𝑗 ∝
𝑤 𝑗

𝑃𝑗
. (A.1)

From A.3, the price index

𝑃𝑗 ∝ 𝑤 𝑗𝜆
1
𝜀0
𝜅

𝑗 𝑗
𝑛
− 1

𝜀0
𝜅

𝑗 𝑗
. (A.2)

From A.3, the mass of firms
𝑛 𝑗 𝑗 ∝ 𝜆

𝜒
1+𝜒
𝑗 𝑗

, (A.3)

where we also used A.1. Putting (A.1)-(A.3) together yields the first result.
To derive the last claim, note that:

𝜕 ln𝑋𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
=

𝜕 ln 𝑛𝑖 𝑗

𝜕 ln 𝑥𝑖 𝑗

𝜕 ln 𝑥𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
+

𝜕 ln 𝑥𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
.

It is immediate from 3. that 𝜕 ln 𝑥𝑖 𝑗

𝜕 ln𝜅𝑖 𝑗
= −𝜀0

𝜅, and 𝜕 ln 𝑛𝑖 𝑗

𝜕 ln 𝑥𝑖 𝑗
= 𝜒, which gives the result.

Proof of Proposition 3.2. From A.1’,

𝑌𝑗 =

(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

)−1 (
𝑤 𝑗𝐿 𝑗 +Π𝑗

)
(A.4)

From A.2’,

𝐶 𝑗 ∝
(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

)−1
𝑤 𝑗

𝑃𝑗
(A.5)

From A.3’,
𝑤 𝑗

𝑃𝑗
= 𝜆

− 1
𝜀0
𝜅

𝑗 𝑗
𝑛

1
𝜀0
𝜅

𝑗 𝑗
(A.6)

Also from A.3’,

𝑛 𝑗 𝑗 ∝ 𝜆
𝜒

1+𝜒
𝑗 𝑗

(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

)− 𝜒
1+𝜒

, (A.7)

Putting (A.5)-(A.7) together yields the first result. This last step also uses the fact that (A.4) and A.2’ imply that
𝑌𝑗

𝑤 𝑗
∝

(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

)−1

. The proof of the claim about the trade elasticity is identical to Proposition 3.1.

Proposition A.1. Consider a class of dynamic models that satisfy the following three conditions in their steady state:

A.1’ For all countries 𝑗, trade is balanced (expenditure = revenue):

𝑃𝑗𝐶 𝑗 = 𝑤 𝑗𝐿 𝑗 +Π𝑗 + 𝑅
𝑔

𝑗

where
𝑅

𝑔

𝑗
=

∑
𝑖

(
𝜏𝑖 𝑗 − 1

)
𝑋𝑖 𝑗

and trade balance holds
∑

𝑖 𝑋𝑖 𝑗 =
∑

𝑖 𝑋𝑗𝑖 .
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A.2’ For all countries 𝑗, profits are a constant share of labor income:

Π𝑗

𝑤 𝑗𝐿 𝑗
= 𝑐𝑜𝑛𝑠𝑡

A.3” For all country pairs
(
𝑖 , 𝑗

)
trade flows satisfy

𝑋𝑖 𝑗 = 𝑛𝑖 𝑗𝑥𝑖 𝑗

where

𝑥𝑖 𝑗 ∝
(

1
𝜏𝑖 𝑗

𝑌𝑗

𝑤𝑖

)𝜀1
1
𝜏𝑖 𝑗

𝑌𝑗

(
𝜏𝑖 𝑗𝜅𝑖 𝑗𝑤𝑖

𝑃𝑗

)𝜀0
𝜅

(A.8)

𝑛𝑖 𝑗 ∝
(
𝑥𝑖 𝑗

𝑤𝑖

)𝜒
for some constants 𝜀0

𝜅 < 0, 𝜀1 > 0, and 𝜒 > 0.

Then

𝐶 𝑗 ∝
(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

)−(
1− 1

𝜀0
𝜅

𝜒
1+𝜒− 𝜀1

𝜀0
𝜅

)
𝜆

1
𝜀0
𝜅

1
1+𝜒

𝑗 𝑗
(A.9)

where 𝜆 𝑗 𝑗 =
𝑋𝑗 𝑗

𝑌𝑗
, and 𝜀0

𝜅(1 + 𝜒) is the long-run elasticity of trade flows with respect to iceberg trade costs.

Proof. Derivations of (A.4) and (A.5) are identical to the steps in the proof of Proposition 3.2. From A.3”,

𝑤 𝑗

𝑃𝑗
= 𝜆

1
𝜀0
𝜅

𝑗 𝑗
𝑛
− 1

𝜀0
𝜅

𝑗 𝑗

(
𝑌𝑗

𝑤 𝑗

)− 𝜀1

𝜀0
𝜅
.

Also from A.3”,

𝑛 𝑗 𝑗 ∝
(
𝜆 𝑗 𝑗

𝑌𝑗

𝑤 𝑗

) 𝜒
1+𝜒

.

Thus,

𝑤 𝑗

𝑃𝑗
∝

(
𝜆

1
1+𝜒
𝑗 𝑗

(
𝑌𝑗

𝑤 𝑗

)−𝜀1− 𝜒
1+𝜒

) 1
𝜀0
𝜅

. (A.10)

Putting (A.5) and (A.10) together yields the first result. This last step also uses the fact that (A.4) and A.2’ imply

that 𝑌𝑗

𝑤 𝑗
∝

(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

)−1

. The proof of the claim about the trade elasticity is identical to Proposition 3.1.
□

Discussion. The conditions required for Proposition A.1 are identical to the conditions in Proposition 3.2 in
every way except the per-firm sales (A.8). This functional form for sales is a strict generalization of (3.22), that
allows per-firm sales to depend non-linearly on destination market size and bilateral tariffs. The resulting gains

from trade formula (A.9) differs from (3.24) by
(
1 −

𝑅
𝑔

𝑗

𝑌𝑗

) 𝜀1

𝜀0
𝜅 . Note that the alternative formulation for per-firm

sales only affects the tariff adjustment component of the GFT formula. The non-tariff component is unchanged,
and 𝜆 𝑗 𝑗 is still raised to the power of the trade elasticity.

Proposition A.1 covers the Melitz (2003) model with tariffs. In that case, firm 𝜔’s sales are given by

𝑥𝑖 𝑗𝑡 (𝜔) =
1
𝜏𝑖 𝑗𝑡

𝐶 𝑗𝑡

(
𝑃𝑗𝑡

)𝜎 (
𝜎

𝜎 − 1
𝜏𝑖 𝑗𝑡𝜅𝑖 𝑗𝑡

𝜑 (𝜔) 𝑤𝑖𝑡

)1−𝜎
, (A.11)
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and the cutoff firm has productivity

𝜑𝑚
𝑖𝑗𝑡 =

𝜎
𝜎 − 1𝜏𝑖 𝑗𝑡𝜅𝑖 𝑗𝑡𝑤𝑖𝑡

(
𝜎𝜏𝑖 𝑗𝑡𝑤𝑖𝑡𝜉

𝐶 𝑗𝑡

(
𝑃𝑗𝑡

)𝜎 ) 1
𝜎−1

. (A.12)

Combining these, the average firm sales are:

𝑥𝑖 𝑗𝑡 ∝
(

1
𝜏𝑖 𝑗𝑡

𝑌𝑗𝑡

𝑤𝑖𝑡

) 𝜃
𝜎−1−1 1

𝜏𝑖 𝑗𝑡
𝑌𝑗𝑡

(
𝜏𝑖 𝑗𝑡𝜅𝑖 𝑗𝑡𝑤𝑖𝑡

𝑃𝑗𝑡

)−𝜃
. (A.13)

Intuitively, tariffs and market size in the Melitz model affect the extensive margin, and thus appear non-linearly
in the average firm sales. This property of the Melitz model with tariffs was pointed out by Felbermayr, Jung,
and Larch (2015). It is easy to verify that the Melitz model with tariffs satisfies all the conditions for Proposition
A.1 to hold. As equation (A.13) makes clear, the Melitz model satisfies A.3” for 𝜀1 = 𝜃

𝜎−1 − 1.
What is notable about this functional form for 𝜀1 is that it goes to zero as 𝜃

𝜎−1 → 1. Di Giovanni, Levchenko,
and Rancière (2011) and di Giovanni and Levchenko (2013) show that the distribution of sales to any destination
in the Melitz-Pareto model follows a power law with exponent− 𝜃

𝜎−1 . Further, these papers document that in the
data, firm sales follow a power law with exponent close to −1, known as Zipf’s Law (see also Axtell, 2001). This
implies that when calibrated to the observed firm size distribution, 𝜃

𝜎−1 ≈ 1 and therefore 𝜀1 ≈ 0. Intuitively,
𝜀1 appears because tariffs affect the extensive margin of exports conditional on drawing the sunk cost. As the
firm size distribution approaches Zipf’s Law, the extensive margin plays no role in the aggregate outcomes (see
di Giovanni and Levchenko, 2013, for a detailed treatment of this result).
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B. Quantitative Appendix

B.1 Dynamic Path Simulations
This section details the procedure to compute the dynamic welfare gains presented in Figure 3 and Table A1.
We use the 30-country sample listed in Table A1 and simulate two scenarios: (i) going from autarky to trade,
and (ii) going from trade to autarky.

We first compute the steady state of the model under trade and under autarky. The steady state under trade
matches the observed expenditure shares and tariffs for 2006. Then, we infer the change in non-tariff trade
costs 𝜅𝑖 𝑗 to generate the difference between the two steady states. In both scenarios, we consider an unexpected
permanent shock to the non-tariff trade costs in period 1. The direction of the shock depends on the scenario.
The the non-tariff trade costs decrease in the first scenario and increase in the second scenario. We use the
Newton algorithm in order to simulate the transition path of the model variables for 42 periods, where period
0 represents the initial steady state and period 41 represents the final steady state. All parameters other than
non-tariff trade costs remain constant throughout the simulations.

We base the gains from trade calculations over the transition path on consumption equivalent variation.
We define the present value of consumption in period 1 𝑉𝑗1 as

𝑉𝑗1 =

∞∑
𝑡=1

𝛽𝑡
(
𝐶 𝑗𝑡

)1−𝛾

1 − 𝛾
,

where 𝛽 is the discount factor and 𝛾 is the factor of relative risk aversion.

Autarky to trade. Consider the transition path from autarky to trade. Let the superscript 𝑇 denote the
transition path under trade and superscript 𝐴 denote the initial steady state under autarky. We then compute
the present value of consumption under the transition path to trade as

𝑉𝑇
𝑗1 =

∞∑
𝑡=1

𝛽𝑡

(
𝐶𝑇

𝑗𝑡

)1−𝛾

1 − 𝛾
.

Now, assume a case where the household receives a constant consumption equivalent 𝐶𝑇,𝑒
𝑗

in every period,
such that

𝑉𝑇,𝑒
𝑗1 =

∞∑
𝑡=1

𝛽𝑡

(
𝐶𝑇,𝑒

𝑗

)1−𝛾

1 − 𝛾
,

where the superscript 𝑒 denotes the consumption equivalent.
Setting 𝑉𝑇

𝑗1 = 𝑉𝑇,𝑒
𝑗1 gives

𝐶𝑇,𝑒
𝑗

=

((
1 − 𝛽

) ∞∑
𝑡=1

𝛽𝑡
(
𝐶𝑇

𝑗𝑡

)1−𝛾
) 1

1−𝛾

,

which is our measure of welfare in the transition path to trade. The dynamic gains from trade under the first
scenario are defined as

𝐷𝐺𝐹𝑇𝐴→𝑇
𝑗 =

𝐶𝑇,𝑒
𝑗

𝐶𝐴
𝑗

.

Trade to autarky. In the second scenario, we analyze the transition path from trade to autarky. Now, the
superscript 𝐴 denotes the transition path under autarky and superscript𝑇 denotes the initial steady state under
trade. We compute the present value of consumption under the autarky transition path as

𝑉𝐴
𝑗1 =

∞∑
𝑡=1

𝛽𝑡

(
𝐶𝐴

𝑗𝑡

)1−𝛾

1 − 𝛾
.
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Following similar steps as in the previous case, the welfare measure in the transition path under autarky is

𝐶𝐴,𝑒
𝑗

=

((
1 − 𝛽

) ∞∑
𝑡=1

𝛽𝑡
(
𝐶𝐴

𝑗𝑡

)1−𝛾
) 1

1−𝛾

.

The dynamic gains from trade in this second scenario are

𝐷𝐺𝐹𝑇𝑇→𝐴
𝑗 =

𝐶𝑇
𝑗

𝐶𝐴,𝑒
𝑗

.
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Figure A1: Tariff Revenue Comparison
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Notes: Figure shows comparison between (log) tariff revenues calculated from BACI-TRAINS and (log) customs and
duties from the World Bank for the year 2006.
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Figure A2: Consumption Transition Paths
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Notes: This figure shows the transition paths of consumption for the countries included in our baseline calibration after a shock to iceberg transport costs
𝜅𝑖 𝑗𝑡 . The shock is unanticipated and occurs in period 1. In the first case, we study the transition path from autarky to trade. In the second case, we study
the transition path from trade to autarky. Dashed lines denote the steady state values under trade and autarky. Consumption is normalized to that of USA
under the trade steady state.
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Table A1: Dynamic gains from trade

Country Steady
state

comp.

Dynamic
path,

autarky
to trade

Dynamic
path,

trade to
autarky

Country Steady
state

comp.

Dynamic
path,

autarky
to trade

Dynamic
path,

trade to
autarky

MYS 2.617 2.337 2.797 ESP 1.520 1.453 1.564
THA 2.469 2.229 2.627 FRA 1.500 1.436 1.542
SAU 2.236 2.043 2.363 ZAF 1.497 1.437 1.536
BEL 2.149 1.971 2.268 TUR 1.491 1.431 1.532
EGY 1.966 1.817 2.048 GBR 1.490 1.427 1.530
PHL 1.835 1.719 1.910 ITA 1.472 1.412 1.511
NLD 1.750 1.646 1.819 PAK 1.463 1.418 1.495
SWE 1.747 1.645 1.816 ARG 1.404 1.358 1.435
POL 1.717 1.620 1.783 AUS 1.382 1.336 1.412
MEX 1.673 1.582 1.733 IND 1.376 1.331 1.403
CAN 1.663 1.573 1.722 NGA 1.359 1.319 1.385
KOR 1.647 1.560 1.700 CHN 1.312 1.274 1.335
DEU 1.578 1.501 1.628 JPN 1.296 1.261 1.319
ROW 1.555 1.480 1.601 USA 1.285 1.251 1.307
IDN 1.526 1.461 1.570 BRA 1.240 1.214 1.257

Notes: Table presents the numerical results for the dynamic GFT from Figure 3. The GFT
formula for steady state comparisons follows (3.24), while the dynamic path calculations follow
Appendix B.1.
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