Dr. Karl Hausker tackles several questions surrounding the growing problem of climate change and proposes some possible solutions. February, 2020.
Transcript:
>> SARAH MILLS: Good morning, this one is not live, so I will use my booming voice.
Good morning, and welcome to the Ford School, I am Sarah Mills, I am a research here at
the Ford School in our Center for Local, State, and Urban Policy, our acronym is CLOSUP
low sub does apply policy research on a range of state and local issues, but one of our
specific initiatives looks at renewable energy, the work that we do in close up on
Renewable Energy is largely funded by the Ford School Renewable Energy Support Fund, and
it really takes a view that there are a range of state, local and federal policies that
either facilitate or hinder, renewable energy deployment from the media, or even some
policy makers often focus on some of the big name climate policies, so there's a lot of
attention on carbon tax or renewable portfolio standards, or cap and trade or the Green
New Deal and those are all important, but in order to have an energy transition we're
going to need to deploy a whole bunch of clean energy infrastructure. And so, it's
equally important to look at policies like siting because that controls the rules of
where you're allowed to build infrastructure, it's important to look at tax policy, both
to make sure that clean energy developers have a financial incentive, they can actually
afford to deploy this technology, but also to make sure that there's something, some
economic interest in it, for the communities that would host that infrastructure. The
work that we do at considers workforce development policy and making sure that there are
people that are trained to be able to have that clean energy transition come to fruition.
And I could go on and on.
But importantly, a lot of these policies that we talk about here are on renewable energy
and we know that a transition and achieving carbon neutrality is going to take more than
just building more renewable energy.
That's why I'm really thrilled that we were able to partner with us Global CO2 Initiative
to bring Karl Hausker Graham pus to better understand what getting to net-zero will entail.
I want to acknowledge the other co-sponsors of today's event, the School for Environment
and Sustainability, the Graham Sustainability Institute, and the Center for Sustainable
Systems. And I also wanna say thanks Susan fancy from The Global CO2 Initiative and Bonnie
Roberts, who's probably still running around in the back from the Ford School for making
this event happen today and now I wanna turn it over to Professor Volker the Director of
The Global CO2 Initiative to introduce our speaker. But thank you again for being here.
[ APPLAUSE ]
>> PROFESSOR VOLKER: Sarah, thank you for being the local host and good morning everyone,
I'm thrilled for any opportunity that I personally... And I think I lost negative can have
to engage with all the codes and colleges on central campus in the periphery of CID or
North Campus. But of course, today, we're looking at a climate challenges, and solutions,
which is perfectly lined with what we do at the globe to initiative, and we will hear
today from Chaucer who is our guest today, coming to us from the World Resources Institute.
Well, he leads the Climate Program and I putting things in a broader perspective to see
where the challenges are and how we arrive at sensible solutions.
God first lands. Things might make sense and upon close of an inspection, they don't...
We will certainly hear from a leading expert in this field, one might say, actually the
expert in this field, he has been engaged in climate-related programs for more than three
decades, now.
It probably... I lead analysis and modeling of climate mitigation electricity market
design and social cost of care.
He has done so many things that I could easily use up his speaking time here to...
I don't on, I mean, having spoken with you yesterday, I know that I need to spare any
second I can.
So acknowledging your work for the Clinton Administration in the EPA and towards in the
agency climate policy development and COO also saying that you support it as Chief
Economist, the US senate committee on Energy and Natural Resources you certainly have
put you degrees from Berkeley and Cornell. To phenomenal use and I'm so pleased that you
here today, call that it... The floor is yours.
>> DR. KARL HAUSKER: Thank our thanks everyone, thanks to all the sponsors of this really
appreciate the chance to speak here at the University of Michigan. I think it's important
that we set the stage, first by going back 66 million years to a lecture hall very much
like this with a climate change expert speaking to the dinosaurs assembled the picture is
pretty bleak gentleman. The world's climate are changing the mammals are taking over and
we all have a brain, about the size of a walnut, the dinosaur is an extinct. They didn't
mitigate the asteroid that at the earth, they didn't adapt very well. Fortunately, we
have brains larger than a walnut and we are going to solve this problem, we are going to
mitigate global warming, we are going to adapt to the warming that is in the pipeline
that Job has begun and it's gonna be carried on for decades to come. By the students in
this room. Let's roll up or sleeves and figure out how to do it.
There's no line of what I'm gonna cover today.
The Net Zero challenge, how to take emissions down to net-zero by 2050 consistent with
the IPCC 15 degree report that came out over a year ago. I'm gonna focus on three
takeaways from that report. The needed transformation of the entire economy particular
attention to Pathways to de-Carbonite the electricity sector, and finally the an emphasis
on the need by mid-century, for carbon dioxide removal. From the atmosphere, I... One
focus on a special time, on the renewables revolution.
We all know that the cost, the solar and wind has come down, "how far can wind and solar
take us on this journey?
And I'm also gonna sound a theme of the need to spread our chips beyond solar and wind
and talk about the rules for nuclear and carbon capture utilization and storage, or CCS
CC us and finally winding up with what I really consider the carbon capture imperative.
I'm gonna go pretty fast, but you are gonna have access to my PowerPoint. There's lots of
links at the bottom each slide if you wanna dive into some of the sources I quote, and
we'll have some Q and A at the end.
So many of you are probably familiar with the 15 degrees report. It not only talked about
the impacts of various levels of warming. 15 degrees, two degrees. It urged us to start
focusing on trying to limit warming to 15 degrees rather than the kind... Big widely
accepted, get two degrees that it helps way for many years. It also laid out the kind of
pathways, we need to get on to limit warming to either 15 or two degrees, this is the
rather daunting rather scary chart. Again, many of you are probably familiar with it.
That tells us where we are now as a globe emitting roughly 40 giga tons of CO2 per year,
and how we need to get on a very steep slope of decreases so we're admitting roughly
net-zero missions. Maybe some positive emissions may be taking some out of the atmosphere
by mid-century, beyond that we're gonna have to even do more.
The IPCC looked at dozens and dozens of computer simulations of how the world economies
could get there. And I wanna emphasize three major takeaways from all that analysis of
mitigation pathways. First of all, yes, we need transformations across all sectors.
The power sector are buildings, our transportation systems in our industry.
I'm focusing on CO2 here from the energy sector as I'm sure many of you know, there are
five other greenhouse gases there is also black carbon there are many different case
contributors, but the battle is gonna be won or lost on what we do on CO2. It's about
80% of the problem, but we also need to work on the other five greenhouse gases to
renewable electricity meaning large as solar, solar and wind in the IPCC modeling, they
believe that with the cost decreases, we have seen over the last 10 years, we could have
globally a system that's 60 to 80% powered by wind and solar by 2050, that's great, news
and comes into the cost far less than we thought 10 years ago, but we're gonna explore
why that's not 100% renewables in the electricity sector.
Finally, the big take away as you can see past 2050 Global CO2 Miss. So actually, turn
negative. We need to find ways to actually take CO2 out of the atmosphere because we are
likely to overshoot the levels, that would hold warming to 15 degrees or to two degrees.
That is also a daunting challenge but I do doable and everything I say today about the
pathways we can get on can be done with technology that's currently commercial currently,
commercial or is near commercial, we are testing it in laboratories or we're doing
demonstrations and will also have more technology innovation on the next 30 years that we
can barely imagine, now, and the technology innovation almost always brings pleasant
surprises. So this is doable.
Let's talk about the transformations.
There are four basic strategies that appear in all of the deep carbonation literature on
how we get there, and I wanna focus first on energy of energy efficiency just across all
end uses, in the economy, we need to be as efficient as possible.
We have been trying since a re-loves writing in the 1970s to make our economy more
efficient, we know we can squeeze more use out of every Batu or every kilowatt hour we
use... We make gradual progress toward that goal.
There's still a long way to go. We know that was currently on technology. In your
commercial we can take the dollars and the BTs per dollar of GDP from about 3 million B
per 100 GDP and cut it by two-thirds over the next 30 years.
If we're smart, if we apply the technologies we know work once we make every and
efficient as possible, the next step is to electrify as many and uses as possible to
substitute electric, the direct use of electricity. For the combustion of fossil fuels
and we... We're already starting to do that with electric hybrids plug-in hybrids all
lector cars in the transportation sector, we know we could switch from gas water heating
to heat pumps, guess hot water to electric or water heating.
And so this... And across industry, there is a number of applications we could use more
direct electricity or use electricity to create a zero carbon fuel like hydrogen or
synthetic methane.
And so in this particular study done by Jim Williams and the consulting group e-ER, that
came out last year, they charted pathways for the US where we go from about 20% direct
use of electricity across our end uses to triple that to 60% of all and use energy. We
know how to do that.
Finally now actually number three, not finally, one if we're gonna Leif the economy,
we're gonna demand a lot more electricity, we have to de-Carbonite that electricity and
we can do that through a variety of technologies solar PV, solar-thermal either she a
thermal hydro New Clear and carbon capture used with fossil fuels, or biomass all of
those are either zero electric zero carbon generation or very low carbon generation?
I got our in electricity sector, from over 300 down to below 50 or even lower depending
on the generation mix.
Those three things combined can take us way down this pathway. The four strategy as I
mentioned, the beginning is carbon capture, we can apply it in power generation, we can
apply it in industry and ultimately, we can apply it to actually removing carbon dioxide
from the atmosphere. These are the four big strategies that can get us down that road to
net zero.
What does this cost?
The good news is the cost of going on these pathways has come way down. Also from the Jim
Williams study, this is a really fascinating chart of how the... How, what percentage of
GDP, have we spent on supplying energy to the the OPEC oil embargo of the 70s and then
decreasing. This is driven a lot by oil costs and then a fluctuating kinda in the 6 to 8
to 9% range over the last 20 years.
So the baseline projection of what we will spend on energy, if we don't solve the climate
problem is kind of a steady decrease from six declining more as the economy grows, but
energy remains relatively abundant and cheap. If we get on any one of the studies, seven
pathways consistent with ultimately getting to 350 PPM the end of the century, so Sunday
to the US, to net-zero by 2050 we are spending 2 to 3% additional Ong of our GDP on clean
energy instead of the baseline case, what that means is just staying in the same kind of
range that historically we've been at, and this is true globally as well as for the US.
So, "Soltan climate does not mean the end of Western civilization, it does not mean that
we tank the economy, we can afford this, it's far more costly not to do this.
This is a complex chart that gives you a feel for those transformations across buildings,
transportation industry and what happens to various energy sources.
The top, you have demand for liquids meeting a petroleum natural gas and electricity and
then on the bottom of supply, let's see what happens, how would we transform our use of
petroleum liquids where we are here with 30 quads mostly of oil fueling our transportation
sector, we can take that way down and instead we can substitute electricity in our
vehicles, natural gas a bunch of it is used in our commercial residential buildings, we
can squeeze that down with the technologies I described and electrify it, on the supply
side, our liquids or fossil fuels decreased dramatically, we supplement them with some
renewable fuels.
We probably don't wanna keep making Ethan ABA, we can make biofuels biodiesel, things
like that and a lower content with carbon capture on the supply side natural gas remains
an element of the economy in this kind of pathway, it decreases overall use, but as as we
wrap up the electricity supply and again, like I said, when you electrify everything, you
gotta produce a lot more power. Natural guests still plays a role.
We get to about 67%Renewables, a largely windows, solar with with our sort of our
existing Hydro to... In this scenario, we keep... Nuclear flat for about 20 years, but
then with a new generation of reactors that the nuclear component could increase.
The wonderful thing about this study that again was actually done for the our children's
trust lawsuit, back in release in 2019, is that the models have sort of a base case with
nuclear and CCS in along with renewables, along with land use changes that remove co-from
the atmosphere and they kind of play. What's that game jungle where you pull the blocks
out okay? They show us sinners. If we don't expand, nuclear what happens... What do we
have to do if we don't have good land use, what do we do if you don't succeed in look
electrifying the economy as much.
If you read that study, you'll see how this kind of a push me, pull me thing, when you
pull options out. One thing that they did not pull out because they couldn't was some
development of carbon capture technology, they could not get to net-zero without some
applications of carbon capture.
So we saw in the IPCC studies that we got to 680% solar and wind by 2050, we saw that
same result in the US modeling that I just showed which is also consistent across say
the Obama long-term strategy report that came out in 2016 and other modeling that I would
call sort of mainstream modeling of how do we de-Carbonite the power sector.
Just wanna give you two other examples here is the European Union's clean planet for all
report from 2018, where they showed how they can grow their renewables to 808-185% by
2050, in their Dearborn pathways a 65 to 72% of that is wind and solar, the rest is some
hydro and biomass as they phase out fossil fuels in the power sector, the black diamonds
and keep... Nuclear relatively constant, although it shrinks as a percentage of total
generation. Again, this is kind of mainstream modeling of how to get there.
And the final example I'll give you is from Irena the International Renewable Energy
Authority, which is a collaboration of about 20 governments worldwide designed to promote
renewable energy across the globe. They put out a roadmap last year on how to get near to
net-zero by 2050 and they too, it come up with a very similar model for the power sector,
where globally we could get 80-6% of our power from renewables. A chunk of that is hydro.
A chunk of that is bio-energy about 62%Is your solar and wind chunk mostly solar PV and
wind, small chunk of concentrated solar thermal power.
So this is all kind of a very consistent picture, but how do we reconcile that with the
headlines that often scream out of the trade press or the newspapers? renewables are
winning the battle against coal and gas on economic terms, solar costs and when costs
are so low, they're cheaper than existing coal and nuclear according to lead the natural
guest just about everywhere by 2023.Why would we not just build electricity sector,
entirely on a on-Sheep solar and went?
One key to this is that this cost comparison, this assertion that solar wind, are cheaper
than anything else, realize on a metric called the leveled cost of energy meaning
electrical energy and to understand that puzzle we need to do a little dive on that.
As I said at the outset, there has been a revolution in renewables the levied cost of
energy from a winder solar plant as declined dramatically over the last 10 years,
economies of scale, plus plus innovation, the cost of wind in the US has decreased about
70% On an L-C-O-E-basis cost of PV solar has declined about 90% over the last 10 years on
an LC-E-basis, so wind 28 to 54, a megawatt depending location utility scale solar big
plants, not rooftop solar 36-44, a megawatt hour. But what does this mean? What is the
LCA that means just looking at that plant by itself in isolation, cranking out power
according to whatever pattern it is capable of You can do this for a call plan or gas
plant nuclear plant wind solar it looks at it in isolation, so a nuclear plant might run
247 most of the year except for refueling, a wind plant is gonna have sort of a
stochastic pattern across seasons across days was just look at the average cost of what
that plant puts out.
That's important thing to keep in mind, metric of cow and stack it up against other types
of generation. We find that that pump out these LC numbers are places like lizard
consulting Bloomberg New Energy Finance, so I... So, they rack up similar numbers that we
just saw to say, "Here's onshore wind cheaper than 60... A megawatt hour tracking solar
voltaic non-tracking solar biotech not sure why they have large hydro in here because
we're not really building any more large hydro in the US, we've taken up all the sites
and here's combined-cycle natural gas turbine and look at these numbers, it looks like
the solar wind have now so below the total cost of building a new gas plant.
And I also note that if you run numbers for nuclear CO-CO, with carbon capture gas
peaking plants, guess with CCS they would all be tire here, then these numbers in the
kind of 20-304 megawatt hour. But as you can probably guess, we need to keep in mind at
power systems are not built of one plant. Let's just... Let's just find the cheapest
plant, build lots of that. A plant power systems are built of different kinds of plants
playing different roles based on their capabilities and relative costs. So, I like to
describe this as the riddle of cheap renewables and high system costs. This is just a
thought experiment from some authors at Google from a couple of years ago, the ask
themselves, "What if I had a power system of just kind of dispatch nice gas plants that
cost me for Sena, kill what hour? And what if I started to try to de-Carbonite that with
just one type of Power Plant and nothing but solar to that power system, the system cost
stay steady for a while but eventually they start escalating, why because if you just
keep throwing solar on nothing but solar then you're throwing in a production pattern
that just peaks in the middle of the day, drops to nothing for 12 hours, the 12 hours of
night time.
What if we did that, was just wind just tried to de-Carbonite going from 0% zero carbon
facies up to 100% zero carbon generation, just keep throwing wind on over and over the
system cost stay stable for a while, but then eventually get that Nine linear effect.
And finally, even if you tried to back out all of your natural guests with nothing but
nuclear system cost a stable for a while, but eventually turn up, why is that, why does
this phenomenon happen in all the studies, I've looked at that asked that question, this
is another illustrate from the "istra ion from that same Google study where they asked
the same question, but this time, let's do sort of the mixture of solar and wind, let's
throw in some batteries let's start with zero renewables and zero batteries and see what
happens as we build out and add more and more solar and wind and batteries, and start
backing out the gas.
You get a steady system cost for a while, but then you have this non-linear phenomenon,
what happens why does that happen in these projections of very high renewable systems,
it's related to something called integration costs, and we have an electrical engineers
in the room.
No, okay, I ate in a... Because of the intermittent nature the variable nature of solar
and wind, we have to take certain steps to keep the lights on to keep it reliable when it
fluctuates as opposed to power plants that are very highly reliable. They still break down
sometimes, but you control them when they operate and sometimes you can ramp them up, you
can ramp them down to follow load, but it's different in a high solar. And wind
situation, the first thing we try to do to address that variability is build transmission
lines to aggregate solar and wind over a bigger geographic area, the bigger geographic
area, you can aggregate over you have or the law of large numbers and the output smooths
out to some extent transmission is not free, that's an integration cost.
Second thing we can do and we're starting to do is load shifting demand response. Try to
move your demand for power to when the sun is shining to when the wind is blowing.
We can do this somewhat with the pricing mechanism charging different prices, different
times of day, we can do with programs that use all sorts of cool software to cycle your
air conditioner or turn on your electric closed drive here and there.
We can ask industry to shut down certain hours and give them some economic benefit for
that.
We can shift percentages of demand here and there. Some people think we could shift 20%
or more move load around but it's not cost less, there are prices to pay for shifting
load around that's an integration cost. The third one that we've heard a lot about... And
then again, there's lots of good news. Is storage as you've probably heard the cost of
lithium battery storage has dropped dramatically. Also recently a we are now often we're
doing utilities are often installing four to six hours of storage on their system.
Sometimes plants are co-located with storage, that's letting us push abundant solar in the
day time into four to six hours into the evening and avoiding those dramatic ramp-ups of
other power sources when the sun sets, batteries are still not free, we're doing some
steps to deal with sort of the daily fluctuation of win and solar but there are also
seasonal. Differences in wind and solar production in the winter.Solar production is
lowest for obvious reasons, distance from the sun angle of the sun.
Wind patterns vary by season and again, depending on weather, and climatic patterns of
varies by country to country, we tend to have a lower wind production.
I think in the summer is actually lower than a spring or fall.
I'll have to double check, I'll have to double check that. But again, depends on the
country.
There's also just whether fluctuation sometimes, you have weather patterns that just shut
down solar and wind for days.
What do you do in those situations? What's your integration cost to deal with that, what
a number of modelers. Do when they project heavy renewable systems is actually
deliberately create over generation, in some months.
In other words, I E-If... So I production bottom out in the fall and December, just
build the system really large to produce as much power as you need.
That system is then overbuilt in spring and summer and you have lots of surplus power if
you do nothing with it that drives your system costs up.
We need to start thinking about if we have overbuilt systems, we wanna use that spare
electricity say to create hydrogen if we're not using it in our buildings, our industry
or our transportation is... So the laymen of explanation for why does this happen at some
point is that those integration costs are real and they get spread over narrower, more
infrequent periods large capital cost, I think of batteries that might be amortized over
only a couple of days per year. That's what drives us the exact shape of that curve
depends on the system, how much transmission have you built, how much load shifting, are
capable of doing. So it's not necessarily always 80 or always 60, maybe it can be 90 and
so, but it's kind of like a law of diminishing returns for the economists in the room.
You can't just keep throwing the same input into a production process over and over,
without getting diminishing returns.
I love the German language.
I ate. They have a word, a long word for everything.
Just as an illustration. "duala the dark old rooms.
This is not a computer simulation, this is a real record of what happens at least once a
year in the winter in Germany, the dark doldrums where for 10 days give or take a couple
of days, the weather patterns, it's really cloudy and the wind drives up and they have a
dramatic drop in wind and solar production.
What do they do now?
They turn on their coal and gas plants, they're sort of legacy fossil fuel system and
their missions, shoot up for those days. But this is the kind of thing that power system
planners need to compensate for and it's what all of us thinking about what kind of
electricity system, we're gonna build, how do we deal with this? There's also simulated
Duca flats that happen in polar vortex period during the US.
So I wanna go back and illustrate those integration costs in a little more concrete way
here we've already seen this slide. Looks like solar and wind are looking pretty good,
as stand-alone plants.
But I wanna show you the full graph from B-N-E-F-where you just saw this part, right?
Here's the rest of what they show where they start illustrating the costs of integration.
So you look at what happens when we start throwing just four hours of storage onto a wind
plant.
Well, we may get up close to 100 over 100 a megawatt hour.
What happens when we throw 4 of batteries on a solar PV plant? Well, we're up to 176 a
megawatt hour.
What is the cost of demand response?
I haven't dug into the origin of these numbers, so I can't tell you what's behind them,
but it's their representation of a range of what that load shifting, and demand response
would cost on a dollars per megawatt hour?
This is a peer plant which we just run this few hours as we can open cycle, generate and
gas turbine just appear four hours of utility scale batteries is way up 170s... 180s and
new pump hydro... Systems, that's a form of storage, it's the largest form of storage, we
have right now. They've often decades and decades old. If we try to build more pump
storage systems, it's pretty expensive.
So these are the integration costs that drive up the average system cost that we have to
be concerned about.
Counterpoint.
And by the way, I'm not here to bash renewables I'm not anti-renewables, I want renewables
to carry as much of the load as possible.
There are experts largely a couple of academic groups in Australia Finland and this is
Mark Jacobs and out of Stanford, that do run models that say I can get you 100% renewables
not only just for the electricity sector, I can supply energy across all economy.
They are not in the mainstream of models. This is a group. I personally, I believe that
they make rather heroic assumptions to get their heroic on the amount of load shifting,
that as possible on how far battery Costs will drop and when they model the entire world,
the model integrated transmission systems across entire continents "tartaric entire
content of Africa, the entire Middle East is one Kumaran mission system.
Why are you laughing, the... And so there are plenty of groups that there's NGOS, devoted
to 100% renewables, there's mayors that wanna buy 100% clean, which really in this case,
means a 100% renewables. We have corporations that have said, "We wanna buy 100%
renewables, those organizations are increasing use of renewables, which is good, and the
big integration costs are not gonna happen the next couple of years. They're gonna happen
out in the 2030s... 2040s, if we stay on this trajectory.
So some people say don't... Don't worry about it now, but wise or even wants you to know
that they're gonna brew... Their beer with 100% wind. And again, this might be a
successful marketing campaign but I want to urge you all to think about solving the
climate problem as a question of what solutions are you gonna bet on to solve this...
Are you gonna put all your chips on a couple of technologies, or are you gonna spread
your chips across multiple technologies?
The I rotate.
There are vehement arguments to leave it all on the ground "Stop fossil fuel use as
quickly as possible, do not use fossil fuel and power plants or in industry, even with
carbon capture that takes the emissions and stores them safely underground. There are
people who say shut down the existing reactors, as quickly as possible or maybe run them,
but don't build any new ones.
These are not value judgments or a of relative risks. And I respect the people their
opinions to say the cost of the risk of nuclear unacceptable the risks of fossil fuel
use, are just unacceptable, because there's environmental risks of production of them
and transportation etcetera, but there are also risks with almost any form of energy.
There are risks of all the aluminum mining and steel mini you need to do to build
windmills A... And, and, uh, there's land use impacts, of any energy source.
So I encourage you to think about trading off risks against each other.
If you take nuclear off the table, what's left and how will you supply the world's energy
needs, plcs off, what do you do if you pull both off, you're effectively putting all your
chips on a... On a handful of technologies that may or may not solve this problem, right?
I spread your chips.
My personal philosophy, the Union of Concerned Scientists, a watchdog NGO for the nuclear
Cy for many years has looked at this risk is trade off and they've concluded we should
keep our existing reactors operating if they have a good safety record, and the costs are
reasonable... We also have some promising designs for small modular reactors that are at
the pilot stage, that development is worth watching, we may wanna as a society and as a
globe put a few chips on that one.
So, I carbon capture and storage. The oil and gas industry has been doing it successfully
for years to enhance oil recovery on existing reservoirs.
We know we can keep it underground once we pump it up it down.
It was also great innovation going on in this sector, to... I encourage you to become
familiar with a company called net power demonstrating a 50-megawatt gas plant in Texas
right now, that achieves a 100% capture of CO2 emissions.
I know I'm getting short on time, but boy, there's one really important thing. Industry
emissions. We're gonna need carbon capture.
I wanna spend just a couple of minutes on this big task, removing carbon dioxide from the
atmosphere, how do we do that?
We can think of several ways on the right-hand side here, you see what's called the
natural solutions.
And had no till farming and other agricultural processes and practices that store more
soil excuse me, that store carbon in the soil, we can plant trees, we can restore degree
degraded lands, and we can enhance, we can literally remove carbon dioxide from the
atmosphere by growing more trees.
And then there's the technical means bio-energy with carbon capture and storage, growing
dedicated energy plants to the burn and biomass plants capture the CO2 it has a net
negative impact, and we're even pilot piloting something called direct air capture a very
energy intensive process that literally removes those 400 parts per million of CO2 out of
the air concentrates that is ready to use, or store underground. So the those are some
options. There's other things at the research stage. Enhanced weathering rocks and
minerals. See, what are captured.
But let's go back to the IPCC? Pathways.
They showed us for a luster to Pathways among the many dozens of modeling exercises,
they reviewed.
So you'll see the familiar toboggan slide that I showed you, alias in the four pathways,
what they illustrated was depending on how fast we can get our missions down where
they're gonna do a little bit of carbon acid removal or more or even more or even a lot.
And the color coding here shows the limits of what we can do with aloe agriculture,
forestry, and land use practice. These are the natural means of Soils, and forests. It
can be an important slab of removing CO2 from the atmosphere, but there's a limit to how
much we can do with that. And the IPC has scored those out the yellow part they coded in
their original report as Becks as bio-energy with carbon capture.
But this, too, could it could involve some constraints start planning that many dedicated
energy crops. What happens, you start competing with food production and affecting
biodiversity, so many in the environmental community. Don't like the idea of direct air
capture. Don't like the idea of bio-energy with CCS. They wanna use the natural means
they wanna restrict us to "afflue at a court for try and so P-1 and P-2 look a lot more
attractive, but if you dig deeper into the IPCC report, you look at what underlies
P-1 P 2, P-3 P-4, what are the global energy demand projections?
And this takes a little bit of digging, and fixing the legend. So the origin report, but
what this chart shows is exodus of primary energy consumption, globally and we in
20-20-15, we are about at 600 Exodus assume a dramatic drop by 2030 of almost a third of
global energy consumption.
It makes assumptions like dramatic movement to plant-based diets, slower population
growth other lifestyle changes to less energy intensive lifestyle world world-wide, all
of which, personally, I would welcome in many ways, but is it realistic to think that
that's gonna happen? drops from 600 to 400 exo deals by 20-30. and then leveling off.
Or even further decreases I think we have to be prepared instead for growth in energy
consumption and the P3 P4 shows steady or increasing growth in energy demand if P3 and
P4 is a more realistic view of the world or at least we need to be ready for that then we
have to be ready to do this, we need some form of technological crosses. So this is what
I call the Carbon-Capture imperative we need to start moving now to innovate on carbon
capture, start to deploy and scale up and put all the regulatory systems in place for
safety, and the public acceptance. Not 'cause we're gonna deploy it today, but we're
gonna have to start deploying it. 2030-2040. and the lead times for that technology are
not measured in months, they're measured in years, and years.
I think we're gonna definitely need it for "caradoc ad removal, we're definitely gonna
need it for certain industrial sources. It is likely to play a role in electricity
generation.
And I don't, personally, I don't put a lot of belief behind the idea, that developing
carbon capture creates a moral hazard that well, we're not gonna worry so much about
climate because we can capture carbon acid, but again that's something we... We may wanna
deal with in-Q-and-A-So my key messages, how do we solve this? Be efficient electrify
everything produced mountains of zero carbon electricity.
Use a broad portfolio of technologies make sure we innovate and bring lots of options to
the table 'cause we're gonna need many beyond solar and wind spread our chips. And also
in the discussion, I've a lot been talking about a US perspective, but we also need to
think globally, the US is a technology leader if we don't innovate in some of these areas
I'm not sure other countries are gonna bring these technologies to fit even if we don't
think we're gonna need a technology we may wanna do the RD, and anyway because developing
countries may need it Eastern Europe may need it countries that are not blessed with the
kind of hydro and land and wind and son that we have.
So thanks very much, I look